LOOP GROUPS, STRING CLASSES AND EQUIVARIANT COHOMOLOGY

被引:2
作者
Vozzo, Raymond F. [1 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
loop groups; string class; caloron correspondence; equivariant cohomology; UNIVERSAL CONNECTIONS; EXISTENCE;
D O I
10.1017/S1446788711001066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a classifying theory for LG-bundles, where LG is the loop group of a compact Lie group G, and present a calculation for the string class of the universal LG-bundle. We show that this class is in fact an equivariant cohomology class and give an equivariant differential form representing it. We then use the caloron correspondence to define (higher) characteristic classes for LG-bundles and to prove a result for characteristic classes for based loop groups for the free loop group. These classes have a natural interpretation in equivariant cohomology and we give equivariant differential form representatives for the universal case in all odd dimensions.
引用
收藏
页码:109 / 127
页数:19
相关论文
共 19 条
[1]   The Atiyah Algebroid of the Path Fibration over a Lie Group [J].
Alekseev, Anton ;
Meinrenken, Eckhard .
LETTERS IN MATHEMATICAL PHYSICS, 2009, 90 (1-3) :23-58
[2]  
[Anonymous], OXFORD MATH MONOGRAP
[3]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[4]   The universal gerbe, Dixmier-Douady class, and gauge theory [J].
Carey, AL ;
Mickelsson, J .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 59 (01) :47-60
[5]  
Cartan H., 1951, CTR BELGE RECH MATH, P15
[6]  
Dupont J.L., 1978, Lecture Notes in Mathematics, V640
[7]   KAC-MOODY MONOPOLES AND PERIODIC INSTANTONS [J].
GARLAND, H ;
MURRAY, MK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (02) :335-351
[8]  
Guillemin V. W., 1999, Mathematics Past and Present
[9]   GROUP COHOMOLOGY CONSTRUCTION OF THE COHOMOLOGY OF MODULI SPACES OF FLAT CONNECTIONS ON 2-MANIFOLDS [J].
JEFFREY, LC .
DUKE MATHEMATICAL JOURNAL, 1995, 77 (02) :407-429
[10]  
KALKMAN J, 1993, THESIS U UTRECHT