Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/ Nasicon/Na sodium model battery with stable electrochemical performance

被引:59
作者
Kehne, P. [1 ]
Guhl, C. [2 ]
Ma, Q. [3 ]
Tietz, F. [3 ,4 ]
Alff, L. [1 ]
Hausbrand, R. [2 ]
Komissinskiy, P. [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, Adv Thin Film Technol, D-64287 Darmstadt, Germany
[2] Tech Univ Darmstadt, Inst Mat Sci, Surface Sci, D-64287 Darmstadt, Germany
[3] Forschungszentrum Julich, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Helmholtz Inst Munster, D-52425 Julich, Germany
关键词
Room-temperature all-solid-state sodium battery; Nasicon; NaxCoO2; Impedance spectroscopy; LITHIUM-ION BATTERY; CATHODE MATERIAL; ENERGY-STORAGE; WATER; INTERFACES; STABILITY; GROWTH; FILMS; POWER; NA;
D O I
10.1016/j.jpowsour.2018.10.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state sodium batteries are attractive due to the abundance of sodium and advantageous for safe battery operation by avoiding flammable organics and liquids and suppressed dendrite formation. Currently, the lack of a chemically stable sodium solid electrolyte with high ion conductivity at room temperature is one of the challenges for future development of sodium batteries. Herein, we present a Na CoO2/Nasicon/Na thin-film model sodium solid-state battery using a Sc-substituted Nasicon solid electrolyte with a high ionic conductivity of 4 x 10(-3)S cm(-1). The battery shows a high specific capacity of 150 mAh g(-1) at room-temperature and discharge rates of up to 6C. Excellent chemical stability of this solid electrolyte at high voltages of up to 4.2 V increases the accessible sodium (de)intercalation range and battery capacity. Direct extraction of the interface resistances between the electrode materials of the thin-film model cell using electrochemical impedance spectroscopy gives a unique opportunity of correlation the electrochemical performance with properties of electrode materials and their interfaces.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 51 条
[1]   Preferred orientation of polycrystalline LiCoO2 films [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, BJ ;
Hart, FX ;
Jun, HP ;
Hackney, SA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :59-70
[2]   Electrochemical investigation of the P2-NaxCoO2 phase diagram [J].
Berthelot, R. ;
Carlier, D. ;
Delmas, C. .
NATURE MATERIALS, 2011, 10 (01) :74-U3
[3]   Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2 [J].
Bhide, Amrtha ;
Hofmann, Jonas ;
Duerr, Anna Katharina ;
Janek, Juergen ;
Adelhelm, Philipp .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (05) :1987-1998
[4]   ELECTROCHEMICAL BEHAVIOR OF THE PHASES NAXCOO2 [J].
BRACONNIER, JJ ;
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
MATERIALS RESEARCH BULLETIN, 1980, 15 (12) :1797-1804
[5]   PERFORMANCE-CHARACTERISTICS OF SODIUM SUPER IONIC CONDUCTOR PREPARED BY THE SOL-GEL ROUTE FOR SODIUM-ION SENSORS [J].
CANEIRO, A ;
FABRY, P ;
KHIREDDINE, H ;
SIEBERT, E .
ANALYTICAL CHEMISTRY, 1991, 63 (22) :2550-2557
[6]   An improved battery characterization method using a two-pulse load test [J].
Coleman, Martin ;
Hurley, William Gerard ;
Lee, Chin Kwan .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2008, 23 (02) :708-713
[7]   Topotactic routes to layered calcium cobalt oxides [J].
Cushing, BL ;
Wiley, JB .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 141 (02) :385-391
[8]   The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates [J].
Dashjav, Enkhtsetseg ;
Ma, Qianli ;
Xu, Qu ;
Tsai, Chih-Long ;
Giarola, Marco ;
Mariotto, Gino ;
Tietz, Frank .
SOLID STATE IONICS, 2018, 321 :83-90
[9]   ELECTROCHEMICAL INTERCALATION OF SODIUM IN NAXCOO2 BRONZES [J].
DELMAS, C ;
BRACONNIER, JJ ;
FOUASSIER, C ;
HAGENMULLER, P .
SOLID STATE IONICS, 1981, 3-4 (AUG) :165-169
[10]   Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries [J].
Ding, J. J. ;
Zhou, Y. N. ;
Sun, Q. ;
Yu, X. Q. ;
Yang, X. Q. ;
Fu, Z. W. .
ELECTROCHIMICA ACTA, 2013, 87 :388-393