CRISPR-Cas9 HDR system enhances AQP1 gene expression

被引:9
|
作者
Wang, Zhimin [1 ]
Wang, Yaohe [1 ,2 ]
Wang, Songling [3 ,4 ]
Zhang, Li-Rong [5 ]
Zhang, Na [1 ]
Cheng, Zhenguo [1 ]
Liu, Qingshi [1 ]
Shields, Kelly J. [6 ]
Hu, Baoli [7 ,8 ]
Passineau, Michael J. [9 ]
机构
[1] Zhengzhou Univ, Acad Med Sci, Sch Basic Med Sci, Natl Ctr Int Res Cell & Gene Therapy,Sinobritish, Zhengzhou 450052, Henan, Peoples R China
[2] Queen Mary Univ London, Barts Canc Inst, Ctr Mol Oncol, London EC1M 6BQ, England
[3] Capital Med Univ, Salivary Gland Dis Ctr, Beijing 100069, Peoples R China
[4] Capital Med Univ, Sch Stomatol, Mol Lab Gene Therapy & Tooth Regenerat, Beijing 100069, Peoples R China
[5] Zhengzhou Univ, Sch Basic Med Sci, Dept Pharmacol, Zhengzhou 450052, Henan, Peoples R China
[6] Allegheny Hlth Network, Lupus Ctr Excellence, Autoimmun Inst, Dept Med, Pittsburgh, PA 15212 USA
[7] UPMC, Childrens Hosp Pittsburgh, Div Neurosurg, Pittsburgh, PA 15224 USA
[8] Univ Pittsburgh, Sch Med, Dept Neurol Surg, Pittsburgh, PA 15261 USA
[9] Allegheny Hlth Network, Cardiovasc Inst, Gene Therapy Program, Pittsburgh, PA 15212 USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
replacement of promoter; gene editing; aquaporin; 1; salivary gland dysfunction; MEDIATED TRANSFER; PROMOTER REGION; SALIVARY-GLANDS; RADIATION; MUTATIONS; SECRETION;
D O I
10.18632/oncotarget.22901
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Ionizing radiation (IR) is the primary therapeutic tool to treat patients with cancerous lesions located in the head and neck. In many patients, IR results in irreversible and severe salivary gland dysfunction or xerostomia. Currently there are no effective treatment options to reduce the effects of xerostomia. More recently, salivary gland gene therapy utilizing the water-specific protein aquaporin 1 (AQP1) has been of great interest to potentially correct salivary dysfunction. In this study, we used CRISPR-Cas9 gene editing along with the endogenous promoter of AQP1 within the HEK293 and MDCK cell lines. The successful integration of the cytomegalovirus (CMV) promoter resulted in a significant increase of AQP1 gene transcription and translation. Additional functional experiments involving the MDCK cell line confirmed that over-expressed AQP1 increased transmembrane fluid flux indicative of increased intracellular fluid flux. The off-target effect of designed guided RNA sequence was analyzed and demonstrated a high specificity for the Cas9 cleavage. Considering the development of new methods for robust DNA knock-in, our results suggest that endogenous promoter replacement may be a potential treatment for salivary gland dysfunction.
引用
收藏
页码:111683 / 111696
页数:14
相关论文
共 50 条
  • [1] Overcoming the Undesirable CRISPR-Cas9 Expression in Gene Correction
    Xia, Emily
    Duan, Rongqi
    Shi, Fushan
    Seigel, Kyle E.
    Grasemann, Hartmut
    Hu, Jim
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2018, 13 : 699 - 709
  • [2] Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing
    Gong Shaohua
    Li Na
    Tang Bo
    ACTA CHIMICA SINICA, 2020, 78 (07) : 634 - 641
  • [3] Safeguarding CRISPR-Cas9 gene drives in yeast
    DiCarlo, James E.
    Chavez, Alejandro
    Dietz, Sven L.
    Esvelt, Kevin M.
    Church, George M.
    NATURE BIOTECHNOLOGY, 2015, 33 (12) : 1250 - +
  • [4] CRISPR-Cas9 gene editing and human diseases
    Jinka, Chaitra
    Sainath, Chithirala
    Babu, Shyamaladevi
    Chakravarthi, Chennupati Ashok
    Prasanna, Muppidi Lakshmi
    Krishnan, Madhan
    Sekar, Gayathri
    Chinnaiyan, Mayilvanan
    Kumari, Andugula Swapna
    BIOINFORMATION, 2022, 18 (11) : 1081 - 1086
  • [5] CRISPR-Cas9 Gene Editing of the Sal1 Gene Family in Wheat
    Mohr, Toni
    Horstman, James
    Gu, Yong Q.
    Elarabi, Nagwa I.
    Abdallah, Naglaa A.
    Thilmony, Roger
    PLANTS-BASEL, 2022, 11 (17):
  • [6] CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy
    Mbakam, Cedric Happi
    Lamothe, Gabriel
    Tremblay, Guillaume
    Tremblay, Jacques P.
    NEUROTHERAPEUTICS, 2022, 19 (03) : 931 - 941
  • [7] Editing the Melanocortin-4 Receptor Gene in Channel Catfish Using the CRISPR-Cas9 System
    Khalil, Karim
    Elaswad, Ahmed
    Abdelrahman, Hisham
    Michel, Maximillian
    Chen, Wenbiao
    Liu, Shikai
    Odin, Ramjie
    Ye, Zhi
    Drescher, David
    Vo, Khoi
    Bugg, William S.
    Qin, Guyu
    Yang, Yujia
    Backenstose, Nathan J. C.
    Liu, Zhanjiang
    Cone, Roger D.
    Dunham, Rex
    FISHES, 2023, 8 (02)
  • [8] Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications
    Liu, Chang
    Zhang, Li
    Liu, Hao
    Cheng, Kun
    JOURNAL OF CONTROLLED RELEASE, 2017, 266 : 17 - 26
  • [9] Non-viral nanocarriers for CRISPR-Cas9 gene editing system delivery
    Tang, Xuefeng
    Wang, Zhao
    Zhang, Ying
    Mu, Wei
    Han, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [10] Increasing the efficiency of gene editing with CRISPR-Cas9 via concurrent expression of the Beta protein
    Zhao, Weiyu
    Guo, Yanan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 270