Microthermoforming of microfluidic substrates by soft lithography (μTSL): optimization using design of experiments

被引:29
作者
Focke, M. [1 ]
Kosse, D. [2 ]
Al-Bamerni, D. [1 ]
Lutz, S. [2 ]
Mueller, C. [3 ]
Reinecke, H. [2 ,3 ]
Zengerle, R. [1 ,2 ,4 ]
von Stetten, F. [1 ,2 ]
机构
[1] Univ Freiburg, Dept Microsyst Engn IMTEK, Lab MEMS Applicat, D-79110 Freiburg, Germany
[2] HSG IMIT, D-78052 Villingen Schwenningen, Germany
[3] Univ Freiburg, Dept Microsyst Engn IMTEK, Lab Proc Technol, D-79110 Freiburg, Germany
[4] Univ Freiburg, BIOSS Ctr Biol Signalling Studies, D-79110 Freiburg, Germany
关键词
D O I
10.1088/0960-1317/21/11/115002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a detailed analysis of microthermoforming by soft lithography (mu TSL) for replication of foil-based microfluidic substrates. The process was systematically optimized by design of experiments (DOE) enabling fabrication of defect-free lab-on-a-chip devices. After the assessment of typical error patterns we optimized the process toward the minimum deviation between mold and thermoformed foil substrates. The following process parameters have most significant impact on the dimensional responses (p < 0.05): critical temperature before start of evacuation, molding temperature, pressure of pre-stretching and duration of pre-stretching as well as duration of molding pressure. The most relevant parameter is molding temperature with >40% relative impact. The DOE results in an empirical process model with a maximum deviation between the prediction and experimental proof of 2% for the optimum parameter set. Finally, process optimization is validated by the fabrication and testing of a microfluidic structure for blood plasma separation from human whole blood. The optimized process enabled metering of a nominal volume of 4.0 mu l of blood plasma with an accuracy deviation of 3% and a metering precision of +/- 7.0%. The mu TSL process takes about 30 min and easily enables the replication of 300 mu m wide microchannels having vertical sidewalls without any draft angles in a well-controllable way. It proves to be suitable for multiple applications in the field of microfluidic devices.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Micro-injection moulding of polymer microfluidic devices [J].
Attia, Usama M. ;
Marson, Silvia ;
Alcock, Jeffrey R. .
MICROFLUIDICS AND NANOFLUIDICS, 2009, 7 (01) :1-28
[2]  
Bauer J, 2009, PHARM PACKAGING HDB, P1
[3]   Polymer microfabrication technologies for microfluidic systems [J].
Becker, Holger ;
Gaertner, Claudia .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (01) :89-111
[4]   Innovative food packaging solutions [J].
Brody, Aaron L. ;
Bugusu, Betty ;
Han, Jung H. ;
Sand, Claire Koelsch ;
Mchugh, Tara H. .
JOURNAL OF FOOD SCIENCE, 2008, 73 (08) :R107-R116
[5]   Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems [J].
Bundgaard, F. ;
Perozziello, G. ;
Geschke, O. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2006, 220 (11) :1625-1632
[6]  
Chang JH, 2003, MICROSYST TECHNOL, V10, P76, DOI 10.1007/S00542-003-0311-1
[7]  
DERRINGER G, 1980, J QUAL TECHNOL, V12, P214, DOI 10.1080/00224065.1980.11980968
[8]  
Disch A, 2007, P ANN INT IEEE EMBS, P6323
[9]   The centrifugal microfluidic bio-disk platform [J].
Ducree, Jens ;
Haeberle, Stefan ;
Lutz, Sascha ;
Pausch, Sarah ;
von Stetten, Felix ;
Zengerle, Roland .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :S103-S115
[10]   Centrifugal microfluidic system for primary amplification and secondary real-time PCR [J].
Focke, Maximilian ;
Stumpf, Fabian ;
Roth, Guenter ;
Zengerle, Roland ;
von Stetten, Felix .
LAB ON A CHIP, 2010, 10 (23) :3210-3212