Single-Nucleotide Polymorphism-Based Genetic Diversity Analysis of Clinical Pseudomonas aeruginosa Isolates

被引:8
作者
Muthukumarasamy, Uthayakumar [1 ,2 ]
Preusse, Matthias [1 ,2 ]
Kordes, Adrian [1 ,2 ]
Koska, Michal [1 ,2 ]
Schniederjans, Monika [1 ,2 ]
Khaledi, Ariane [1 ,2 ]
Haeussler, Susanne [1 ,2 ]
机构
[1] Helmholtz Ctr Infect Res, Dept Mol Bacteriol, Braunschweig, Germany
[2] TWINCORE GmbH, Inst Mol Bacteriol, Ctr Clin & Expt Infect Res, Hannover, Germany
来源
GENOME BIOLOGY AND EVOLUTION | 2020年 / 12卷 / 04期
基金
欧洲研究理事会;
关键词
pan-genome; core genome; SNPs; convergent and divergent evolution; ADAPTATION; VIRULENCE; DYNAMICS; CONSERVATION; EVOLUTION; CLONES;
D O I
10.1093/gbe/evaa059
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extensive use of next-generation sequencing has the potential to transform our knowledge on how genomic variation within bacterial species impacts phenotypic versatility. Because different environments have unique selection pressures, they drive divergent evolution. However, there is also parallel or convergent evolution of traits in independent bacterial isolates inhabiting similar environments. The application of tools to describe population-wide genomic diversity provides an opportunity to measure the predictability of genetic changes underlying adaptation. Here, we describe patterns of sequence variations in the core genome among 99 individual Pseudomonas aeruginosa clinical isolates and identified single-nucleotide polymorphisms that are the basis for branching of the phylogenetic tree. We also identified single-nucleotide polymorphisms that were acquired independently, inseparate lineages, and not through inheritance from a common ancestor. Although our results demonstrate that the Pseudomonas aeruginosa core genome is highly conserved and in general, not subject to adaptive evolution, instances of parallel evolution will provide an opportunity to uncover genetic changes that underlie phenotypic diversity.
引用
收藏
页码:396 / 406
页数:11
相关论文
共 53 条
  • [11] Evolutionary conservation of essential and highly expressed genes in Pseudomonas aeruginosa
    Doetsch, Andreas
    Klawonn, Frank
    Jarek, Michael
    Scharfe, Maren
    Bloecker, Helmut
    Haeussler, Susanne
    [J]. BMC GENOMICS, 2010, 11
  • [12] Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective
    Folkesson, Anders
    Jelsbak, Lars
    Yang, Lei
    Johansen, Helle Krogh
    Ciofu, Oana
    Hoiby, Niels
    Molin, Soren
    [J]. NATURE REVIEWS MICROBIOLOGY, 2012, 10 (12) : 841 - 851
  • [13] The Pseudomonas aeruginosa Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity
    Freschi, Luca
    Vincent, Antony T.
    Jeukens, Julie
    Emond-Rheault, Jean-Guillaume
    Kukavica-Ibrulj, Irena
    Dupont, Marie-Josee
    Charette, Steve J.
    Boyle, Brian
    Levesque, Roger C.
    [J]. GENOME BIOLOGY AND EVOLUTION, 2019, 11 (01): : 109 - 120
  • [14] Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium
    Freschi, Luca
    Jeukens, Julie
    Kukavica-Ibrulj, Irene
    Boyle, Brian
    Dupont, Marie-Josee
    Laroche, Jerome
    Larose, Stephane
    Maaroufi, Halim
    Fothergill, Joanne L.
    Moore, Matthew
    Winsor, Geoffrey L.
    Aaron, Shawn D.
    Barbeau, Jean
    Bell, Scott C.
    Burns, Jane L.
    Camara, Miguel
    Cantin, Andre
    Charette, Steve J.
    Dewar, Ken
    Deziel, Eric
    Grimwood, Keith
    Hancock, Robert E. W.
    Harrison, Joe J.
    Heebs, Stephan
    Jelsbak, Lars
    Jia, Baofeng
    Kenna, Dervla T.
    Kidd, Timothy J.
    Klockgether, Jens
    Lam, Joseph S.
    Lamont, Iain L.
    Lewenza, Shawn
    Loman, Nick
    Malouin, Francois
    Manos, Jim
    McArthur, Andrew G.
    McKeown, Josie
    Milot, Julie
    Naghra, Hardeep
    Nguyen, Dao
    Pereira, Sheldon K.
    Perron, Gabriel G.
    Pirnay, Jean-Paul
    Rainey, Paul B.
    Rousseau, Simon
    Santos, Pedro M.
    Stephenson, Anne
    Taylor, Veronique
    Turton, Jane F.
    Waglechner, Nicholas
    [J]. FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [15] Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment
    Hilker, Rolf
    Munder, Antje
    Klockgether, Jens
    Losada, Patricia Moran
    Chouvarine, Philippe
    Cramer, Nina
    Davenport, Colin F.
    Dethlefsen, Sarah
    Fischer, Sebastian
    Peng, Huiming
    Schoenfelder, Torben
    Tuerk, Oliver
    Wiehlmann, Lutz
    Woelbeling, Florian
    Gulbins, Erich
    Goesmann, Alexander
    Tuemmler, Burkhard
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2015, 17 (01) : 29 - 46
  • [16] BACTOMEa reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates
    Hornischer, Klaus
    Khaledi, Ariane
    Pohl, Sarah
    Schniederjans, Monika
    Pezoldt, Lorena
    Casilag, Fiordiligie
    Muthukumarasamy, Uthayakumar
    Bruchmann, Sebastian
    Thoeming, Janne
    Kordes, Adrian
    Haeussler, Susanne
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D716 - D720
  • [17] SRST2: Rapid genomic surveillance for public health and hospital microbiology labs
    Inouye, Michael
    Dashnow, Harriet
    Raven, Lesley-Ann
    Schultz, Mark B.
    Pope, Bernard J.
    Tomita, Takehiro
    Zobel, Justin
    Holt, Kathryn E.
    [J]. GENOME MEDICINE, 2014, 6
  • [18] BIGSdb: Scalable analysis of bacterial genome variation at the population level
    Jolley, Keith A.
    Maiden, Martin C. J.
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [19] Within-Host Adaptation Mediated by Intergenic Evolution in Pseudomonas aeruginosa
    Khademi, S. M. Hossein
    Sazinas, Pavelas
    Jelsbak, Lars
    [J]. GENOME BIOLOGY AND EVOLUTION, 2019, 11 (05): : 1385 - 1397
  • [20] Pseudomonas aeruginosa genomic structure and diversity
    Klockgether, Jens
    Cramer, Nina
    Wiehlmann, Lutz
    Davenport, Colin F.
    Tuemmler, Burkhard
    [J]. FRONTIERS IN MICROBIOLOGY, 2011, 2