Local well-posedness to the Cauchy problem of the 2D compressible Navier-Stokes-Smoluchowski equations with vacuum

被引:2
作者
Liu, Yang [1 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Smoluchowski equations; Strong solutions; Uniqueness; Vacuum; CLASSICAL-SOLUTIONS; SEDIMENTATION; EXISTENCE; BOUNDARY; BEHAVIOR;
D O I
10.1016/j.jmaa.2020.124154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the local strong solution to the compressible Navier-Stokes-Smoluchowski equations with vacuum as far field density on the whole space R-2 without additional Cho-Choe-Kim type compatibility conditions, which provided the initial density and the initial particles density decay not too slow at infinity. In particular, we extend the results of Ding et al. (2016) [13] and Yang (2020) [21] to the 2D case. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 24 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
Ballew J., 2013, PREPRINT
[3]  
Ballew J., 2014, MATH TOPICS FLUID PA
[4]  
Ballew J, 2014, AIMS SER APPL MATH, V8, P301
[5]  
Baranger C., 2005, In ESAIM Proc. EDP Sci, V14, P41, DOI [10.1051/proc:2005004, DOI 10.1051/PROC:2005004]
[6]   Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression [J].
Berres, S ;
Bürger, R ;
Karlsen, KH ;
Tory, EM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :41-80
[7]   On the dynamics of a fluid-particle interaction model: The bubbling regime [J].
Carrillo, J. A. ;
Karper, T. ;
Trivisa, K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (08) :2778-2801
[8]   Stability and asymptotic analysis of a fluid-particle interaction model [J].
Carrillo, Jose A. ;
Goudon, Thierry .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (09) :1349-1379
[9]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[10]   On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities [J].
Cho, YG ;
Kim, H .
MANUSCRIPTA MATHEMATICA, 2006, 120 (01) :91-129