In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force

被引:37
作者
Menichetti, Roberto [1 ]
Kanekal, Kiran H. [1 ]
Kremer, Kurt [1 ]
Bereau, Tristan [1 ]
机构
[1] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
关键词
COARSE-GRAINED MODEL; VIRTUAL EXPLORATION; CHEMICAL UNIVERSE; NEURAL NETWORKS; PERMEABILITY; PREDICTION; FIELD; COEFFICIENTS; SIMULATION; EFFICIENT;
D O I
10.1063/1.4987012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The partitioning of small molecules in cell membranes-a key parameter for pharmaceutical applications-typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity-already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 42 条
  • [1] EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA
    BENNETT, CH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) : 245 - 268
  • [2] Predicting a Drug's Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data
    Bennion, Brian J.
    Be, Nicholas A.
    McNerney, M. Windy
    Lao, Victoria
    Carlson, Emma M.
    Valdez, Carlos A.
    Malfatti, Michael A.
    Enright, Heather A.
    Nguyen, Tuan H.
    Lightstone, Felice C.
    Carpenter, Timothy S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (20) : 5228 - 5237
  • [3] Automated Parametrization of the Coarse-Grained Martini Force Field for Small Organic Molecules
    Bereau, Tristan
    Kremer, Kurt
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (06) : 2783 - 2791
  • [4] More than the sum of its parts: Coarse-grained peptide-lipid interactions from a simple cross-parametrization
    Bereau, Tristan
    Wang, Zun-Jing
    Deserno, Markus
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (11)
  • [5] Optimized convergence for multiple histogram analysis
    Bereau, Tristan
    Swendsen, Robert H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) : 6119 - 6129
  • [6] Canonical sampling through velocity rescaling
    Bussi, Giovanni
    Donadio, Davide
    Parrinello, Michele
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
  • [7] A Method to Predict Blood-Brain Barrier Permeability of Drug-Like Compounds Using Molecular Dynamics Simulations
    Carpenter, Timothy S.
    Kirshner, Daniel A.
    Lau, Edmond Y.
    Wong, Sergio E.
    Nilmeier, Jerome P.
    Lightstone, Felice C.
    [J]. BIOPHYSICAL JOURNAL, 2014, 107 (03) : 630 - 641
  • [8] Chipot C., 2007, FREE ENERGY CALCULAT
  • [9] Martini straight: Boosting performance using a shorter cutoff and GPUs
    de Jong, Djurre H.
    Baoukina, Svetlana
    Ingolfsson, Helgi I.
    Marrink, Siewert J.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 199 : 1 - 7
  • [10] Improved Parameters for the Martini Coarse-Grained Protein Force Field
    de Jong, Djurre H.
    Singh, Gurpreet
    Bennett, W. F. Drew
    Arnarez, Clement
    Wassenaar, Tsjerk A.
    Schafer, Lars V.
    Periole, Xavier
    Tieleman, D. Peter
    Marrink, Siewert J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (01) : 687 - 697