A model for phase transitions with vector hysteresis effect

被引:1
作者
Minchev, Emil [1 ]
机构
[1] Ruse Univ, Dept Math Anal, Ruse, Bulgaria
关键词
nonlinear PDEs; existence of solutions; subdifferential; Yosida approximation; hysteresis; L-infinity-energy method;
D O I
10.1216/RMJ-2008-38-2-545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with a system of nonlinear PDEs which describes a phase transition model with vector hysteresis and diffusion effect. Existence of solutions for the system under consideration is proved by the method of Yosida approximation, L-infinity-estimates and energy type inequalities in L-2.
引用
收藏
页码:545 / 566
页数:22
相关论文
共 22 条
[1]   A prey-predator model with hysteresis effect [J].
Aiki, T ;
Minchev, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :2020-2032
[2]  
Aiki T., 2003, FUNKC EKVACIOJ-SER I, V46, P441
[3]  
ATTOUCH H, 1973, PUBLICATION MATH ORS
[4]  
Brezis H, 1973, Notas de Matematica (50), V5
[5]  
Brokate M., 1996, HYSTERESIS PHASE TRA
[6]   A NONLINEAR EVOLUTION PROBLEM DESCRIBING MULTICOMPONENT PHASE-CHANGES WITH DISSIPATION [J].
COLLI, P ;
HOFFMANN, KH .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (3-4) :275-297
[7]   A phase-field model with temperature dependent constraint [J].
Colli, P ;
Kenmochi, N ;
Kubo, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (02) :668-685
[8]  
HILPERT M, 1989, MATH MODELS PHASE CH
[9]   Parabolic PDEs with hysteresis and quasivariational inequalities [J].
Kenmochi, N ;
Koyama, T ;
Meyer, GH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (05) :665-686
[10]  
Kenmochi N., 2004, ADV MATH SCI APPL, V14, P633