Advances in Editing Silkworms (Bombyx mori) Genome by Using the CRISPR-Cas System

被引:17
|
作者
Baci, Gabriela-Maria [1 ]
Cucu, Alexandra-Antonia [1 ]
Giurgiu, Alexandru-Ioan [1 ]
Musca, Adriana-Sebastiana [1 ]
Bagameri, Lilla [1 ]
Moise, Adela Ramona [1 ]
Bobis, Otilia [1 ]
Ratiu, Attila Cristian [2 ]
Dezmirean, Daniel Severus [1 ]
机构
[1] Univ Anim Sci & Vet Med Cluj Napoca, Fac Anim Sci & Biotechnol, Cluj Napoca 400372, Romania
[2] Univ Bucharest, Fac Biol, Bucharest 050095, Romania
关键词
Bombyx mori; CRISPR-Cas; silkworms; genome engineering; insect biotechnology; entomology; IMMUNE-SYSTEM; TARGETED MUTAGENESIS; LARVAL GROWTH; GENE; MECHANISMS; EXPRESSION; BACTERIA; HONEY; MODEL; RESISTANCE;
D O I
10.3390/insects13010028
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Simple Summary One of the most powerful gene editing approaches is the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) tool. The silkworm (Bombyx mori) has a great impact on the global economy, playing a pivotal role in the sericulture industry. However, B. mori came into the spotlight by representing one of science's greatest contributors, being used to establish extraordinary bioreactors for the production of target proteins and illustrating a great experimental model organism. Herein, we focus on progress made in the field of B. mori's genome manipulation by using CRISPR-Cas. In order to edit B. mori's genome, remarkable advances were made, such as exposing gene functions and developing mutant lines that exhibit enhanced resistance against B. mori nucleopolyhedrovirus (BmNPV). We also discuss how CRISPR-Cas accelerated the fundamental investigation in B. mori, and beyond, thus highlighting the great potential of the insect's biotechnology in numerous scientific fields. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] The CRISPR-Cas system for plant genome editing: advances and opportunities
    Kumar, Vinay
    Jain, Mukesh
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (01) : 47 - 57
  • [2] The CRISPR-Cas system: beyond genome editing
    Moineau, Sylvain
    Croteau, Felix R.
    Rousseau, Genevieve M.
    M S-MEDECINE SCIENCES, 2018, 34 (10): : 813 - 819
  • [3] CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms
    Javed, Muhammad R.
    Sadaf, Maria
    Ahmed, Temoor
    Jamil, Amna
    Nawaz, Marium
    Abbas, Hira
    Ijaz, Anam
    CURRENT MICROBIOLOGY, 2018, 75 (12) : 1675 - 1683
  • [4] Genome editing in Ustilago maydis using the CRISPR-Cas system
    Schuster, Mariana
    Schweizer, Gabriel
    Reissmann, Stefanie
    Kahmann, Regine
    FUNGAL GENETICS AND BIOLOGY, 2016, 89 : 3 - 9
  • [5] Advances in Engineering the Fly Genome with the CRISPR-Cas System
    Bier, Ethan
    Harrison, Melissa M.
    O'Connor-Giles, Kate M.
    Wildonger, Jill
    GENETICS, 2018, 208 (01) : 1 - 18
  • [6] CRISPR-Cas system: a precise tool for plant genome editing
    Saraswat, Pooja
    Ranjan, Rajiv
    NUCLEUS-INDIA, 2022, 65 (01): : 81 - 98
  • [7] Editing plants for virus resistance using CRISPR-Cas
    Green, J. C.
    Hu, J. S.
    ACTA VIROLOGICA, 2017, 61 (02) : 138 - 142
  • [8] Harnessing CRISPR-Cas for oomycete genome editing
    Vink, Jochem N. A.
    Hayhurst, Max
    Gerth, Monica L.
    TRENDS IN MICROBIOLOGY, 2023, 31 (09) : 947 - 958
  • [9] Heritable Genome Editing with CRISPR/Cas9 in the Silkworm, Bombyx mori
    Wei, Wei
    Xin, Huhu
    Roy, Bhaskar
    Dai, Junbiao
    Miao, Yungen
    Gao, Guanjun
    PLOS ONE, 2014, 9 (07):
  • [10] Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System
    Hwang, Woong Y.
    Fu, Yanfang
    Reyon, Deepak
    Maeder, Morgan L.
    Kaini, Prakriti
    Sander, Jeffry D.
    Joung, J. Keith
    Peterson, Randall T.
    Yeh, Jing-Ruey Joanna
    PLOS ONE, 2013, 8 (07):