A Mathematical analysis of fluid motion in irreversible phase transitions

被引:1
作者
Boldrini, Jose Luiz [1 ]
de Miranda, Luis H. [2 ]
Planas, Gabriela [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, Inst Matemat Estat & Comp Cient, BR-13083859 Campinas, SP, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Irreversible phase transitions; Singular Stokes equations; Convection; Existence of solutions; FIELD MODEL; CONVECTION; EXISTENCE; REGULARITY; EQUATIONS;
D O I
10.1007/s00033-014-0434-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article addresses the mathematical analysis of a model for the irreversible solidification process of certain materials by taking in consideration the effects of natural convection in molten regions. Such a model consists of a highly nonlinear system of partial differential equations coupled to a doubly nonlinear differential inclusion. The existence of weak-strong solutions for the system is proved, and certain mathematical effects of advection on the regularity of the solutions are discussed.
引用
收藏
页码:785 / 817
页数:33
相关论文
共 50 条
  • [21] On a system of nonlinear PDE's for phase transitions with vector order parameter and convective effect
    Minchev, E
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 177 (02) : 309 - 330
  • [22] Existence of Solutions for a Mathematical Model Related to Solid-Solid Phase Transitions in Shape Memory Alloys
    Bonetti, Elena
    Colli, Pierluigi
    Fabrizio, Mauro
    Gilardi, Gianni
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (01) : 203 - 254
  • [23] A degenerating PDE system for phase transitions and damage
    Rocca, Elisabetta
    Rossi, Riccarda
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (07) : 1265 - 1341
  • [24] Phase Transitions and Minimal Hypersurfaces in Hyperbolic Space
    Pisante, Adriano
    Ponsiglione, Marcello
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (05) : 819 - 849
  • [25] Editorial: Mathematical problems in physical fluid dynamics: part II
    Goluskin, D.
    Protas, B.
    Thiffeault, J. L.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2226):
  • [26] Phase transition detection in liquid crystal analysis by mathematical morphology
    Farinha, A.
    Flores, F. C.
    Sampaio, A. R.
    Kimura, N. M.
    Freire, F. C. M.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2022, 345
  • [27] Editorial: Mathematical problems in physical fluid dynamics: part I
    Goluskin, D.
    Protas, B.
    Thiffeault, J. -L.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2225):
  • [28] Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis
    Waniewski, J
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2006, 274 (1-2) : 24 - 37
  • [29] Self-propelled motion in a viscous compressible fluid
    Macha, Vaclav
    Necasova, Sarka
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (02) : 415 - 433
  • [30] Convergence Analysis of a Power Penalty Approach for a Class of Nonlocal Double Phase Complementarity Systems
    Liu, Yongjian
    Zeng, Shengda
    Gasinski, Leszek
    Kim, Yun-Ho
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (01)