A Mathematical analysis of fluid motion in irreversible phase transitions

被引:1
作者
Boldrini, Jose Luiz [1 ]
de Miranda, Luis H. [2 ]
Planas, Gabriela [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, Inst Matemat Estat & Comp Cient, BR-13083859 Campinas, SP, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Irreversible phase transitions; Singular Stokes equations; Convection; Existence of solutions; FIELD MODEL; CONVECTION; EXISTENCE; REGULARITY; EQUATIONS;
D O I
10.1007/s00033-014-0434-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article addresses the mathematical analysis of a model for the irreversible solidification process of certain materials by taking in consideration the effects of natural convection in molten regions. Such a model consists of a highly nonlinear system of partial differential equations coupled to a doubly nonlinear differential inclusion. The existence of weak-strong solutions for the system is proved, and certain mathematical effects of advection on the regularity of the solutions are discussed.
引用
收藏
页码:785 / 817
页数:33
相关论文
共 50 条
  • [1] A Mathematical analysis of fluid motion in irreversible phase transitions
    José Luiz Boldrini
    Luís H. de Miranda
    Gabriela Planas
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 785 - 817
  • [2] ON SINGULAR NAVIER-STOKES EQUATIONS AND IRREVERSIBLE PHASE TRANSITIONS
    Boldrini, Jose Luiz
    de Miranda, Luis H.
    Planas, Gabriela
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) : 2055 - 2078
  • [3] Mathematical analysis of the motion of a piston in a fluid with density dependent viscosity
    Jena, Vaibhav Kumar
    Maity, Debayan
    Sufian, Abu
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (04)
  • [4] Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid
    Haak, Bernhard H.
    Maity, Debayan
    Takahashi, Takeo
    Tucsnak, Marius
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (09) : 1972 - 2017
  • [5] MATHEMATICAL ANALYSIS OF FLUIDS IN MOTION
    Feireisl, Eduard
    NONLINEAR CONSERVATION LAWS AND APPLICATIONS, 2011, 153 : 73 - 100
  • [6] Universality in the dynamical phase transitions of Brownian motion
    Kanazawa, Takahiro
    Kawaguchi, Kyogo
    Adachi, Kyosuke
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [7] IRREVERSIBLE PHASE TRANSITIONS IN DOPED METAL OXIDES FOR USE AS TEMPERATURE SENSORS IN EXPLOSIONS
    Eilers, H.
    Gunawidjaja, R.
    Myint, T.
    Lightstone, J.
    Carney, J.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
  • [8] Kinetic-fluid derivation and mathematical analysis of a nonlocal cross-diffusion-fluid system
    Atlas, Abdelghafour
    Bendahmane, Mostafa
    Karami, Fahd
    Meskine, Driss
    Zagour, Mohamed
    APPLIED MATHEMATICAL MODELLING, 2020, 82 : 379 - 408
  • [9] The Riemann Problem with Phase Transitions for Fluid Flows in a Nozzle
    Mai Duc Thanh
    Duong Xuan Vinh
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2271 - 2317
  • [10] A WELL-POSEDNESS RESULT FOR IRREVERSIBLE PHASE TRANSITIONS WITH A NONLINEAR HEAT FLUX LAW
    Bonfanti, Giovanna
    Luterotti, Fabio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (02): : 331 - 351