Microwave Frequency Quadrupling Based on Distributed Feedback Laser and a Single Intensity Modulator

被引:3
|
作者
Bitew, M. A. [1 ]
Shiu, R. K. [1 ]
Peng, P. C. [1 ]
Gu, H. W. [1 ]
Guo, B. Y. [1 ]
Tang, W. C. [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Electroopt Engn, Taipei 10608, Taiwan
关键词
Distributed feedback laser; frequency quadrupling; microwave-wave signal; MM-WAVE GENERATION; OPTICAL-GENERATION; SIGNAL; SYSTEMS;
D O I
10.1080/01468030.2017.1381204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this article, we have proposed and experimentally demonstrated a directly modulated distributed feedback laser (DFB-LD) to generate microwave and millimeter-wave signals. The proposed scheme uses DFB-LD and intensity modulator (IM) biased at null point. A radio frequency (RF) signal from a signal generator is split into two branches and one branch directly modulates the DFB-LD, while the other branch drives the IM. Two second-order sidebands separated by four times the frequency of the input RF signal are generated. Experimental results indicated that we can generate a four-fold microwave signal with a good optical signal to noise ratio.
引用
收藏
页码:196 / 202
页数:7
相关论文
共 50 条
  • [21] Pulsed Blue Laser Source Based on Frequency Quadrupling of a Thulium Fiber Laser
    Honea, Eric
    Savage-Leuchs, Matthias
    Bowers, Mark S.
    Yilmaz, Tolga
    Mead, Roy
    FIBER LASERS X: TECHNOLOGY, SYSTEMS, AND APPLICATIONS, 2013, 8601
  • [22] Distributed Bragg feedback intensity modulator in Ti:LiNbO3
    Kim, R
    Zhang, J
    Eknoyan, O
    Taylor, HF
    Smith, TL
    ELECTRONICS LETTERS, 2005, 41 (18) : 1028 - 1030
  • [23] Experimental demonstration of a flat optical frequency comb generation based on cascaded directly modulated distributed feedback laser and polarization modulator
    Chen, Dalei
    Wang, Rong
    Pu, Tao
    Xiang, Peng
    Fang, Tao
    Zheng, Jiling
    Huang, Long
    Wang, Peng
    OPTICAL ENGINEERING, 2016, 55 (03)
  • [24] Microwave Photonic Bandpass Filter Based on Carrier-Suppressed Single Sideband Injected Distributed Feedback Laser
    Zhu, Huatao
    Wang, Rong
    Xiang, Peng
    Pu, Tao
    Zheng, Jilin
    Li, Yuandong
    Fang, Tao
    Huang, Long
    Han, Yu
    Chen, Xiangfei
    IEEE PHOTONICS JOURNAL, 2017, 9 (03):
  • [25] Tunable Distributed Feedback Laser Based Frequency Hopping in Terahertz Communications
    Nallappan, Kathirvel
    Skorobogatiy, Maksim
    100th ARFTG Microwave Measurement Conference: Measurement Challenges For Emerging Rf-to-Thz Technologies, ARFTG 2023, 2023,
  • [26] Tunable Distributed Feedback Laser Based Frequency Hopping in Terahertz Communications
    Nallappan, Kathirvel
    Skorobogatiy, Maksim
    2023 100TH ARFTG MICROWAVE MEASUREMENT CONFERENCE, ARFTG, 2023,
  • [27] Measurement and Characterization of Microwave Interaction between Integrated Distributed Feedback Laser Diode and Electro-Absorption Modulator
    Fei Yuan
    Chao Jing
    Meng-Ke Wang
    Shang-Jian Zhang
    Zhi-Yao Zhang
    Yong Liu
    Journal of Electronic Science and Technology, 2022, (04) : 375 - 382
  • [28] Measurement and Characterization of Microwave Interaction between Integrated Distributed Feedback Laser Diode and Electro-Absorption Modulator
    Fei Yuan
    Chao Jing
    Meng-Ke Wang
    Shang-Jian Zhang
    Zhi-Yao Zhang
    Yong Liu
    JournalofElectronicScienceandTechnology, 2022, 20 (04) : 375 - 382
  • [29] Dual-Frequency Distributed Feedback Laser With Optical Frequency Locked Loop for Stable Microwave Signal Generation
    Khan, Muhammad R. H.
    Bernhardi, E. H.
    Marpaung, David A. I.
    Burla, Maurizio
    de Ridder, Rene M.
    Worhoff, Kerstin
    Pollnau, Markus
    Roeloffzen, Chris G. H.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (16) : 1431 - 1433
  • [30] Highly Stable Microwave Carrier Generation Using a Dual-Frequency Distributed Feedback Laser
    Khan, M. R. H.
    Bernhardi, E. H.
    Marpaung, D. A. I.
    Burla, M.
    de Ridder, R. M.
    Worhoff, K.
    Pollnau, M.
    Roeloffzen, C. G. H.
    2012 IEEE INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP), 2012, : 200 - 203