共 71 条
Two distinct pathways for cyclooxygenase-2 protein degradation
被引:87
作者:
Mbonye, Uri R.
[1
]
Yuan, Chong
[1
]
Harris, Clair E.
[1
]
Sidhu, Ranjinder S.
[1
]
Song, Inseok
[1
]
Arakawa, Toshiya
[1
]
Smith, William L.
[1
]
机构:
[1] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词:
D O I:
10.1074/jbc.M710137200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Cyclooxygenases (COX-1 and COX-2) are N-glycosylated, endoplasmic reticulum-resident, integral membrane proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many types of cells, whereas COX-2 is usually expressed inducibly and transiently. The control of COX-2 protein expression occurs at several levels, and overexpression of COX-2 is associated with pathologies such as colon cancer. Here we have investigated COX-2 protein degradation and demonstrate that it can occur through two independent pathways. One pathway is initiated by post-translational N-glycosylation at Asn-594. The N-glycosyl group is then processed, and the protein is translocated to the cytoplasm, where it undergoes proteasomal degradation. We provide evidence from site-directed mutagenesis that a 27-amino acid instability motif (27-IM) regulates post-translational N-glycosylation of Asn-594. This motif begins with Glu-586 8 residues upstream of the N-glycosylation site and ends with Lys-612 near the C terminus at Leu-618. Key elements of the 27-IM include a helix involving residues Glu-586 to Ser-596 with Asn-594 near the end of this helix and residues Leu-610 and Leu-611, which are located in an apparently unstructured downstream region of the 27-IM. The last 16 residues of the 27-IM, including Leu-610 and Leu-611, appear to promote N-glycosylation of Asn-594 perhaps by causing this residue to become exposed to appropriate glycosyl transferases. A second pathway for COX-2 protein degradation is initiated by substrate-dependent suicide inactivation. Suicide-inactivated protein is then degraded. The biochemical steps have not been resolved, but substrate-dependent degradation is not inhibited by proteasome inhibitors or inhibitors of lysosomal proteases. The pathway involving the 27-IM occurs at a constant rate, whereas degradation through the substrate-dependent process is coupled to the rate of substrate turnover.
引用
收藏
页码:8611 / 8623
页数:13
相关论文