Bearing Fault Diagnosis Based on Multiple Transformation Domain Fusion and Improved Residual Dense Networks

被引:37
|
作者
Sun, Jiedi [1 ]
Wen, Jiangtao [2 ,3 ]
Yuan, Caiyan [4 ]
Liu, Zhao [4 ]
Xiao, Qiyang [5 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[3] Yanshan Univ, Key Lab Measurement Technol & Instrumentat Hebei, Qinhuangdao 066004, Hebei, Peoples R China
[4] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[5] Henan Univ, Sch Artificial Intelligence, Zhengzhou 475001, Henan, Peoples R China
关键词
Fault diagnosis; Feature extraction; Time-frequency analysis; Deep learning; Transforms; Vibrations; Convolutional neural networks; Bearing fault diagnosis; residual dense networks; multiple transformation domain processing; attention mechanism; ROTATING MACHINERY; AUTOENCODER;
D O I
10.1109/JSEN.2021.3131722
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic feature extraction is one of the most advantageous merits of deep neural network (DNN), meanwhile, it is an important part for intelligent bearing fault diagnosis. However, most of fault diagnosis methods based on DNN usually excavate the complex relations from original time sequence signals which only present the fault information in time domain. Convolutional Neural Network (CNN) has demonstrated powerful feature learning capabilities in bearing fault diagnosis and the deeper the diagnosis model is, the better the recognition performance is, which resulted in some problems. In order to enrich the fault information from different views and enhance the discrimination for features learned from diagnosis network, this paper proposed a bearing fault diagnosis method based on multi-domain information fusion and improved residual dense network. The original signal and its transformed signals composed the multi-channel input, which contained more comprehensive information and will benefit the deep learning. Then it designed a residual dense network and introduced the convolution attention mechanism which can discriminate the importance of features further improve the feature extraction capability and efficiency of diagnosis network. Finally, it achieved the fault classification, analyzed the effects of key parameters and compared with other diagnosis to verify the effectiveness by lots of experimental results.
引用
收藏
页码:1541 / 1551
页数:11
相关论文
共 50 条
  • [21] Rolling Bearing Fault Diagnosis Using Improved Deep Residual Shrinkage Networks
    Zhang, Zhijin
    Li, He
    Chen, Lei
    Han, Ping
    SHOCK AND VIBRATION, 2021, 2021
  • [22] Bearing fault diagnosis based on feature fusion
    Liu, Fan
    Zhang, Yansheng
    Hu, Zebiao
    Li, Xin
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 771 - 774
  • [23] Stack Autoencoder Transfer Learning Algorithm for Bearing Fault Diagnosis Based on Class Separation and Domain Fusion
    Sun, Meidi
    Wang, Hui
    Liu, Ping
    Huang, Shoudao
    Wang, Pan
    Meng, Jinhao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (03) : 3047 - 3058
  • [24] Bearing fault diagnosis method based on improved deep residual Siamese neural network
    Qian, Chen
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    Yuan, Jianhua
    INSIGHT, 2024, 66 (03) : 174 - 181
  • [25] Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual Network
    Hao, Xinyu
    Zheng, Yuan
    Lu, Li
    Pan, Hong
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [26] Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
    Zhu, Huibin
    He, Zhangming
    Wei, Juhui
    Wang, Jiongqi
    Zhou, Haiyin
    SENSORS, 2021, 21 (07)
  • [27] Multiscale Fusion Attention Convolutional Neural Network for Fault Diagnosis of Aero-Engine Rolling Bearing
    Liu, Xiaolin
    Lu, Jiani
    Li, Zhuo
    IEEE SENSORS JOURNAL, 2023, 23 (17) : 19918 - 19934
  • [28] One Dimensional Convolutional Neural Networks Using Sparse Wavelet Decomposition for Bearing Fault Diagnosis
    Liu, Xiaofan
    Centeno, Jason
    Alvarado, Juan
    Tan, Lizhe
    IEEE ACCESS, 2022, 10 : 86998 - 87007
  • [29] Lightweight Bearing Fault Diagnosis Method Based on Improved Residual Network
    Gong, Lei
    Pang, Chongwen
    Wang, Guoqiang
    Shi, Nianfeng
    ELECTRONICS, 2024, 13 (18)
  • [30] Multiple Transient Extraction Algorithm and Its Application in Bearing Fault Diagnosis
    Zhao, Jie
    Chen, Zhigang
    Wang, Yanxue
    Li, Meng
    Zhong, Xinrong
    Zhao, Zhichuan
    IEEE ACCESS, 2021, 9 : 42397 - 42408