Strong Secrecy on the Binary Erasure Wiretap Channel Using Large-Girth LDPC Codes

被引:62
作者
Subramanian, Arunkumar [1 ]
Thangaraj, Andrew [2 ]
Bloch, Matthieu [3 ]
McLaughlin, Steven W. [1 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Indian Inst Technol Madras, Dept Elect Engn, Madras 600036, Tamil Nadu, India
[3] Georgia Inst Technol, Dept Elect & Comp Engn, Georgia Tech CNRS, UMI 2958, F-57070 Metz, France
关键词
Binary erasure channels; density evolution; information-theoretic security; large girth; low-density parity-check (LDPC) codes; secrecy capacity; strong secrecy; wiretap channels; EXPLICIT CONSTRUCTION; GRAPHS;
D O I
10.1109/TIFS.2011.2148715
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For an arbitrary degree distribution pair (DDP), we construct a sequence of low-density parity-check (LDPC) code ensembles with girth growing logarithmically in block-length using Ramanujan graphs. When the DDP has minimum left degree at least three, we show using density evolution analysis that the expected bit-error probability of these ensembles, when passed through a binary erasure channel with erasure probability epsilon, decays as O(exp(-c(1)n(c2))) with the block-length for positive constants c(1) and c(2), as long as epsilon is less than the erasure threshold epsilon(th) of the DDP. This guarantees that the coset coding scheme using the dual sequence provides strong secrecy over the binary erasure wiretap channel for erasure probabilities greater than 1 - epsilon(th).
引用
收藏
页码:585 / 594
页数:10
相关论文
共 38 条
[1]  
[Anonymous], 2011, Physical-layer security:from information theory to security engineering, DOI DOI 10.1017/CBO9780511977985
[2]  
[Anonymous], 1963, Low-Density Parity-Check Codes
[3]  
Apostol T., 1976, UNDERGRADUATE TEXTS
[4]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[5]  
Bollobas B., 2004, EXTREMAL GRAPH THEOR
[6]   A high girth graph construction [J].
Chandran, LS .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (03) :366-370
[7]  
Cormen T. H., 1990, MIT ELECT ENG COMPUT
[8]  
CSISZAR I, 1978, IEEE T INFORM THEORY, V24, P339, DOI 10.1109/TIT.1978.1055892
[9]  
Csiszar I., 1996, Problems of Information Transmission, V32, P40
[10]  
Davidoff G., 2003, LONDON MATH SOC STUD