Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods

被引:0
|
作者
Bogolubsky, Lev [1 ,2 ]
Gusev, Gleb [1 ,6 ]
Raigorodskii, Andrei [1 ,2 ,3 ,6 ]
Tikhonov, Aleksey [1 ]
Zhukovskii, Maksim [1 ,6 ]
Dvurechensky, Pavel [4 ,5 ]
Gasnikov, Alexander [5 ,6 ]
Nesterov, Yurii [7 ,8 ]
机构
[1] Yandex, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Buryat State Univ, Ulan Ude, Russia
[4] Weierstrass Inst, Berlin, Germany
[5] Inst Informat Transmiss Problems RAS, Moscow, Russia
[6] Moscow Inst Phys & Technol, Moscow, Russia
[7] Ctr Operat Res & Econometr, Louvain La Neuve, Belgium
[8] Higher Sch Econ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
DERIVATIVES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider a non-convex loss-minimization problem of learning Supervised PageRank models, which can account for features of nodes and edges. We propose gradient-based and random gradient-free methods to solve this problem. Our algorithms are based on the concept of an inexact oracle and unlike the state-of-the-art gradient-based method we manage to provide theoretically the convergence rate guarantees for both of them. Finally, we compare the performance of the proposed optimization methods with the state of the art applied to a ranking task.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Intractability of Learning the Discrete Logarithm with Gradient-Based Methods
    Takhanov, Rustem
    Tezekbayev, Maxat
    Pak, Artur
    Bolatov, Arman
    Kadyrsizova, Zhibek
    Assylbekov, Zhenisbek
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [22] Gradient-based optimization of hyperparameters
    Bengio, Y
    NEURAL COMPUTATION, 2000, 12 (08) : 1889 - 1900
  • [23] Gradient-based simulation optimization
    Kim, Sujin
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 159 - 167
  • [24] Accelerated Gradient-Free Optimization Methods with a Non-Euclidean Proximal Operator
    Vorontsova, E. A.
    Gasnikov, A. V.
    Gorbunov, E. A.
    Dvurechenskii, P. E.
    AUTOMATION AND REMOTE CONTROL, 2019, 80 (08) : 1487 - 1501
  • [25] Multi-objective topology optimisation for acoustic porous materials using gradient-based, gradient-free, and hybrid strategies
    Ramamoorthy, Vivek T.
    Ozcan, Ender
    Parkes, Andrew J.
    Jaouen, Luc
    Becot, Francois-Xavier
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (05): : 2945 - 2955
  • [26] Asynchronous Gossip-Based Gradient-Free Method for Multiagent Optimization
    Yuan, Deming
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [27] Accelerated Gradient-Free Optimization Methods with a Non-Euclidean Proximal Operator
    E. A. Vorontsova
    A. V. Gasnikov
    E. A. Gorbunov
    P. E. Dvurechenskii
    Automation and Remote Control, 2019, 80 : 1487 - 1501
  • [28] Training Fuzzy Cognitive Maps Using Gradient-Based Supervised Learning
    Gregor, Michal
    Groumpos, Peter P.
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 547 - 556
  • [29] CHARACTERIZATION OF TRAINING ERRORS IN SUPERVISED LEARNING USING GRADIENT-BASED RULES
    WANG, J
    MALAKOOTI, B
    NEURAL NETWORKS, 1993, 6 (08) : 1073 - 1087
  • [30] Gradient-free strategies to robust well control optimization
    Pinto, Jefferson Wellano Oliveira
    Tueros, Juan Alberto Rojas
    Horowitz, Bernardo
    da Silva, Silvana Maria Bastos Afonso
    Willmersdorf, Ramiro Brito
    de Oliveira, Diego Felipe Barbosa
    COMPUTATIONAL GEOSCIENCES, 2020, 24 (06) : 1959 - 1978