Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Light-Harvesting Nanotube

被引:238
作者
Ji, Lukang [1 ,2 ]
Sang, Yutao [1 ,2 ]
Ouyang, Guanghui [1 ]
Yang, Dong [1 ,2 ]
Duan, Pengfei [3 ]
Jiang, Yuqian [3 ]
Liu, Minghua [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Colloid Interface & Chem Thermodynam, Inst Chem, North First St 2, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, BeiYiTiao 11, Beijing 100190, Peoples R China
[4] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
chirality; circularly polarized luminescence; energy transfer; light-harvesting; supramolecular nanotubes; CIRCULARLY-POLARIZED LUMINESCENCE; PHOTOSYNTHETIC ANTENNA; PHOTOSYSTEM-II; EXCITATION; MOLECULES; EMISSION; DESIGN; ARRAYS; CPL;
D O I
10.1002/anie.201812642
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By constructing a supramolecular light-harvesting chiral nanotube in the aqueous phase, we demonstrate a cooperative energy and chirality transfer. It was found that a cyanostilbene-appended glutamate compound (CG) self-assembled into helical nanotubes exhibiting both supramolecular chirality and circularly polarized luminescence (CPL). When two achiral acceptors, ThT and AO, with different energy bands were co-assembled with the nanotube, the CG nanotube could transfer its chirality to both of the acceptors. The excitation energy could be transferred to ThT but only be sequentially transferred to AO. During this process, the CPL ascribed to the acceptor could be sequentially amplified. This work provides a new insight into the understanding the cooperative chirality and energy transfer in a chiral supramolecular system, which is similar to the natural light-harvesting antennas.
引用
收藏
页码:844 / 848
页数:5
相关论文
共 48 条
[1]   Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative [J].
An, BK ;
Lee, DS ;
Lee, JS ;
Park, YS ;
Song, HS ;
Park, SY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) :10232-10233
[2]  
Andrews DL, 2005, ENERGY HARVESTING MATERIALS, pV
[3]  
[Anonymous], 2017, ANGEW CHEM, V129, P15249
[4]  
[Anonymous], 2017, ANGEW CHEM, V129, P3035
[5]  
[Anonymous], 2017, ANGEW CHEM, V129, P12342
[6]  
[Anonymous], 2012, ANGEW CHEM, V124, P10657
[7]  
[Anonymous], 2018, ANGEW CHEM, V130, P3217
[8]  
[Anonymous], 2016, ANGEW CHEM, V128, P10115
[9]   Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport [J].
Ardona, Herdeline Ann M. ;
Draper, Emily R. ;
Citossi, Francesca ;
Wallace, Matthew ;
Serpell, Louise C. ;
Adams, Dave J. ;
Tovar, John D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (25) :8685-8692
[10]   Photosynthetic energy conversion: natural and artificial [J].
Barber, James .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :185-196