Automatic and Real-Time Identification of Radionuclides in Gamma-Ray Spectra: A New Method Based on Convolutional Neural Network Trained With Synthetic Data Set

被引:44
作者
Daniel, G. [1 ,2 ,3 ]
Ceraudo, F. [2 ,3 ]
Limousin, O. [2 ,3 ]
Maier, D. [2 ,3 ]
Meuris, A. [2 ,3 ]
机构
[1] Ecole Ponts, F-77420 Champs Sur Marne, France
[2] Univ Paris Saclay, IRFU, CEA, F-91191 Gif Sur Yvette, France
[3] Univ Paris Diderot, AIM, Sorbonne Paris Cite, CEA,CNRS, F-91191 Gif Sur Yvette, France
关键词
CdTe; convolutional neural networks (CNNs); deep learning; gamma-ray spectrometry; machine learning; radionuclide identification; NUCLIDE IDENTIFICATION;
D O I
10.1109/TNS.2020.2969703
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic and fast identification of gamma-ray-emitting radionuclides is a challenge in the field of nuclear safety, especially in case of emergency, since it requires complex calculations and often the knowledge of experts to interpret the data. We present a development of an automatic identification method based on convolutional neural networks (CNNs) as a new tool to analyze gamma-ray spectra in real time, which uses not only photoelectric peaks but also extracts all discriminant features in the spectrum, such as Compton structures, for instance. The original approach relies on the training of the CNN with a fully synthetic database, built by means of a Monte Carlo simulation with Geant4 combined with a detailed analytical detector response model. The algorithm and training method are evaluated to identify radionuclides in measurements of the mixtures of sources acquired with Caliste, a fine-pitch CdTe imaging spectrometer. The neural network is able to discriminate each element in an arbitrary mixture very quickly with high accuracy.
引用
收藏
页码:644 / 653
页数:10
相关论文
共 27 条
[1]   EXPERT-SYSTEM FOR NUCLIDE IDENTIFICATION IN GAMMA-SPECTRUM ANALYSIS [J].
AARNIO, PA ;
ALAHEIKKILA, JJ ;
HAKULINEN, TT ;
ROUTTI, JT .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-ARTICLES, 1995, 193 (02) :219-227
[2]   Determination of radioisotopes in gamma-ray spectroscopy using abductive machine learning [J].
AbdelAal, RE ;
AlHaddad, MN .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 391 (02) :275-288
[3]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[4]  
Aloysius N, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P588, DOI 10.1109/ICCSP.2017.8286426
[5]  
[Anonymous], 2013, INT C MACHINE LEARNI
[6]  
[Anonymous], THESIS
[7]  
[Anonymous], RADIOPROTECTION
[8]  
[Anonymous], 2016, STORY CALISTE CDTE B
[9]  
[Anonymous], 2004, N4234 ANSI
[10]  
[Anonymous], THESIS