NAD Blocks High Glucose Induced Mesangial Hypertrophy via Activation of the Sirtuins-AMPK-mTOR Pathway

被引:60
作者
Zhuo, Li
Fu, Bo
Bai, Xueyuan
Zhang, Bin
Wu, Lingling
Cui, Jing
Cui, Shaoyuan
Wei, Ribao
Chen, Xiangmei [1 ]
Cai, Guangyan
机构
[1] Gen Hosp Peoples Liberat Army, Dept Nephrol, Kidney Ctr, Beijing 100853, Peoples R China
基金
中国国家自然科学基金;
关键词
NAD; Sirtuins; AMPK; mTOR; Mesangial hypertrophy; PROTEIN-KINASE; DIABETIC-NEPHROPATHY; CELL-GROWTH; DEACETYLASE ACTIVITY; RENAL HYPERTROPHY; MAMMALIAN TARGET; OXIDATIVE STRESS; SKELETAL-MUSCLE; SIRT1; METABOLISM;
D O I
10.1159/000330077
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background/aims-Since the discovery of NAD-dependent deacetylases, Sirtuins, it has been recognized that maintaining intracellular levels of NAD is crucial for the management of stress-response of cells. Here we show that high glucose(HG)-induced mesangial hypertrophy is associated with loss of intracellular levels of NAD. This study was designed to investigate the effect of NAD on HG-induced mesangial hypertrophy. Methods-The rat glomerular mesangial cells (MCs) were incubated in HG medium with or without NAD. Afterwards, NAD(+)/NADH ratio and enzyme activity of Sirtuins was determined. In addition, the expression analyses of AMPK-mTOR signaling were evaluated by Western blot analysis. Results-We showed that HG induced the NAD(+)/NADH ratio and the levels of SIRT1 and SIRT3 activity decreased as well as mesangial hypertrophy, but NAD was capable of maintaining intracellular NAD(+)/NADH ratio and levels of SIRT1 and SIRT3 activity as well as of blocking the HG-induced mesangial hypertrophy in vitro. Activating Sirtuins by NAD blocked the activation of pro-hypertrophic Akt signaling, and augmented the activity of the antihypertrophic AMPK signaling in MCs, which prevented the subsequent induction of mTOR-mediated protein synthesis. By AMPK knockdown, we showed it upregulated phosphorylation of mTOR. In such, the NAD inhibited HG-induced mesangial hypertrophy whereas NAD lost its inhibitory effect in the presence of AMPK siRNA. Conclusion-These results reveal a novel role of NAD as an inhibitor of mesangial hypertrophic signaling, and suggest that prevention of NAD depletion may be critical in the treatment of mesangial hypertrophy. Copyright (C) 2011 S. Karger AG, Basel
引用
收藏
页码:681 / 690
页数:10
相关论文
共 50 条
[1]   Sirt1 regulates aging and resistance to oxidative stress in the heart [J].
Alcendor, Ralph R. ;
Gao, Shumin ;
Zhai, Peiyong ;
Zablocki, Daniela ;
Holle, Eric ;
Yu, Xianzhong ;
Tian, Bin ;
Wagner, Thomas ;
Vatner, Stephen F. ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2007, 100 (10) :1512-1521
[2]   Characterization of the Murine SIRT3 Mitochondrial Localization Sequence and Comparison of Mitochondrial Enrichment and Deacetylase Activity of Long and Short SIRT3 Isoforms [J].
Bao, Jianjun ;
Lu, Zhongping ;
Joseph, Joshua J. ;
Carabenciov, Darin ;
Dimond, Christopher C. ;
Pang, Liyan ;
Samsel, Leigh ;
Mccoy, J. Philip, Jr. ;
Leclerc, Jaime ;
Nguyen, PhuongMai ;
Gius, David ;
Sack, Michael N. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2010, 110 (01) :238-247
[3]   Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis [J].
Bergeron, R ;
Ren, JM ;
Cadman, KS ;
Moore, IK ;
Perret, P ;
Pypaert, M ;
Young, LH ;
Semenkovich, CF ;
Shulman, GI .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 281 (06) :E1340-E1346
[4]   AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. [J].
Bolster, DR ;
Crozier, SJ ;
Kimball, SR ;
Jefferson, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23977-23980
[5]   AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity [J].
Canto, Carles ;
Gerhart-Hines, Zachary ;
Feige, Jerome N. ;
Lagouge, Marie ;
Noriega, Lilia ;
Milne, Jill C. ;
Elliott, Peter J. ;
Puigserver, Pere ;
Auwerx, Johan .
NATURE, 2009, 458 (7241) :1056-U140
[6]   The AMP-activated protein kinase cascade - a unifying system for energy control [J].
Carling, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) :18-24
[7]   Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt [J].
Chan, Anita Y. M. ;
Dolinsky, Vernon W. ;
Soltys, Carrie-Lynn M. ;
Viollet, Benoit ;
Baksh, Shairaz ;
Light, Peter E. ;
Dyck, Jason R. B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (35) :24194-24201
[8]   Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status [J].
Cheng, SWY ;
Fryer, LGD ;
Carling, D ;
Shepherd, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (16) :15719-15722
[9]   Mammalian TOR: A homeostatic ATP sensor [J].
Dennis, PB ;
Jaeschke, A ;
Saitoh, M ;
Fowler, B ;
Kozma, SC ;
Thomas, G .
SCIENCE, 2001, 294 (5544) :1102-1105
[10]   Pathways of proteolysis affecting renal cell growth [J].
Franch, HA .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2002, 11 (04) :445-450