On the log-normal distribution of stock market data

被引:11
作者
Antoniou, I
Ivanov, VV
Ivanov, VV
Zrelov, PV
机构
[1] ULB, Int Solvay Inst Phys, B-1050 Brussels, Belgium
[2] ULB, Int Solvay Inst Chem, B-1050 Brussels, Belgium
[3] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
[4] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54006, Greece
[5] Joint Inst Nucl Res, Univ Ctr, Dubna 141980, Russia
[6] Inst Super Technol, L-1359 Luxembourg, Luxembourg
关键词
stock market; log-normal law; statistical model;
D O I
10.1016/j.physa.2003.09.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present our recent studies on the development of a statistical model of stock market data. For some stock market data, the statistical distribution of closing prices normalized by the corresponding traded volumes, fits well a log-normal law. For other stocks, the log-normal law is obtained after application of a detrending procedure. Different schemes for the trend determination are considered. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:617 / 638
页数:22
相关论文
共 24 条
[1]  
[Anonymous], MATLAB LANG TECHN CO
[2]  
[Anonymous], 2001, ANAL TIME SERIES STR, DOI DOI 10.1201/9780367801687
[3]  
[Anonymous], INTRO WAVELETS
[4]  
BACHELIER L, 1964, RANDOM CHARACTER STO, P17
[5]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[6]  
BRUN R, 1989, Q121 CERN
[7]   Empirical and theoretical evidence of economic chaos [J].
Chen, Ping .
SYSTEM DYNAMICS REVIEW, 1988, 4 (1-2) :81-108
[8]   Volatility distribution in the S&P500 stock index [J].
Cizeau, P ;
Liu, YH ;
Meyer, M ;
Peng, CK ;
Stanley, HE .
PHYSICA A, 1997, 245 (3-4) :441-445
[9]  
Crow E. L., 1988, Lognormal Distributions: Theory and Applications
[10]  
Danilov DL, 1997, Principal Components of Time Series: The 'Caterpillar' Method