Improving knowledge graph completion via increasing embedding interactions

被引:11
|
作者
Li, Weidong [1 ]
Peng, Rong [2 ]
Li, Zhi [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[2] Guangxi Normal Univ, Coll Comp Sci & Informat Technol, Guilin, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph completion; Interaction embeddings; Knowledge graph embedding; Inception network;
D O I
10.1007/s10489-021-02947-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs usually consist of billions of triplet facts describing the real world. Although most of the existing knowledge graphs are huge in scale, they are still far from completion. As a result, varieties of knowledge graph embedding approaches have emerged, which have been proven to be an effective and efficient solution for knowledge graph completion. In this paper, we devise a novel knowledge graph embedding model named InterERP, which aims to improve model performance by increasing Inter actions between the embeddings of E ntities, R elations and relation P aths. Specifically, we first introduce the interaction matrix to obtain the interaction embeddings of entities and relations. Then, we employ the Inception network to learn the query embedding, which can further increase the interactions between entities and relations. Furthermore, we resort to logical rules to construct semantic relation paths and are committed to modeling the interactions between different relations in a relation path. The experimental results on four commonly used datasets, demonstrate that the proposed InterERP matches or outperforms the state-of-the-art approaches.
引用
收藏
页码:9289 / 9307
页数:19
相关论文
共 50 条
  • [21] QLogicE: Quantum Logic Empowered Embedding for Knowledge Graph Completion
    Chen, Panfeng
    Wang, Yisong
    Yu, Xiaomin
    Feng, Renyan
    KNOWLEDGE-BASED SYSTEMS, 2022, 239
  • [22] Shared Embedding Based Neural Networks for Knowledge Graph Completion
    Guan, Saiping
    Jin, Xiaolong
    Wang, Yuanzhuo
    Cheng, Xueqi
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 247 - 256
  • [23] Multi-view Contrastive Multiple Knowledge Graph Embedding for Knowledge Completion
    Kurokawa, Mori
    Yonekawa, Kei
    Haruta, Shuichiro
    Konishi, Tatsuya
    Asoh, Hideki
    Ono, Chihiro
    Hagiwara, Masafumi
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1412 - 1418
  • [24] An Approach to Knowledge Base Completion by a Committee-Based Knowledge Graph Embedding
    Choi, Su Jeong
    Song, Hyun-Je
    Park, Seong-Bae
    APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [25] Improving FMEA Comprehensibility via Common-Sense Knowledge Graph Completion Techniques
    Razouk, Houssam
    Liu, Xing Lan
    Kern, Roman
    IEEE ACCESS, 2023, 11 : 127974 - 127986
  • [26] Sub-Entity Embedding for inductive spatio-temporal knowledge graph completion
    Wan, Guojia
    Zhou, Zhengyun
    Zheng, Zhigao
    Du, Bo
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 148 : 240 - 249
  • [27] Knowledge Graph Embedding via Graph Attenuated Attention Networks
    Wang, Rui
    Li, Bicheng
    Hu, Shengwei
    Du, Wenqian
    Zhang, Min
    IEEE ACCESS, 2020, 8 (5212-5224) : 5212 - 5224
  • [28] Aggregation or separation? Adaptive embedding message passing for knowledge graph completion
    Li, Zhifei
    Chen, Lifan
    Jian, Yue
    Wang, Han
    Zhao, Yue
    Zhang, Miao
    Xiao, Kui
    Zhang, Yan
    Deng, Honglian
    Hou, Xiaoju
    INFORMATION SCIENCES, 2025, 691
  • [29] A deep embedding model for knowledge graph completion based on attention mechanism
    Huang, Jin
    Zhang, TingHua
    Zhu, Jia
    Yu, Weihao
    Tang, Yong
    He, Yang
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (15) : 9751 - 9760
  • [30] Relation domain and range completion method based on knowledge graph embedding
    Lei J.-P.
    Ouyang D.-T.
    Zhang L.-M.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (01): : 154 - 161