The geometry of analytic varieties satisfying the local Phragmen-Lindelof condition and a geometric characterization of the partial differential operators that are surjective on A(R4)

被引:17
作者
Braun, RW
Meise, R
Taylor, BA
机构
[1] Univ Dusseldorf, Inst Math, D-40225 Dusseldorf, Germany
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1090/S0002-9947-03-03448-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local Phragmen-Lindelof condition for analytic subvarieties of C-n at real points plays a crucial role in complex analysis and in the theory of constant coefficient partial differential operators, as Hormander has shown. Here, necessary geometric conditions for this Phragmen-Lindelof condition are derived. They are shown to be sufficient in the case of curves in arbitrary dimension and of surfaces in C-3. The latter result leads to a geometric characterization of those constant coefficient partial differential operators which are surjective on the space of all real analytic functions on R-4.
引用
收藏
页码:1315 / 1383
页数:69
相关论文
共 36 条
[1]   PROPAGATION OF ANALYTICITY OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS [J].
ANDERSSON, KG .
ARKIV FOR MATEMATIK, 1971, 8 (03) :277-+
[2]  
ANDREOTTI A, 1980, ANAL CONVEXITY PRINC
[3]  
Backlund U., 1991, GEOMETRICAL ALGEBRAI
[4]  
BOCHNAK J, 1987, ERGEBNISSE MATH GREN, V0012
[5]   The overdetermined Cauchy problem [J].
Boiti, C ;
Nacinovich, M .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (01) :155-&
[6]  
Braun R.W., 2001, B SOC ROY SCI LIEGE, V70, P195
[8]   Local radial Phragmen-Lindelof estimates for plurisubharmonic functions on analytic varieties [J].
Braun, RW ;
Meise, R ;
Taylor, BA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) :2423-2433
[9]  
BRAUN RW, 1992, B UNIONE MAT ITAL, V6A, P339
[10]   Higher order tangents to analytic varieties along curves [J].
Braun, RW ;
Meise, R ;
Taylor, BA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (01) :64-90