Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions

被引:30
作者
Budak, Huseyin [2 ]
Kara, Hasan [2 ]
Ali, Muhammad Aamir [3 ]
Khan, Sundas [4 ]
Chu, Yuming [1 ]
机构
[1] Hangzhou Normal Univ, Inst Adv Study Honoring Chen Jian Gong, Hangzhou 311121, Peoples R China
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[4] GC Women Univ, Dept Math, Sialkot, Pakistan
关键词
fractional integrals; Hermite-Hadamard inequality; interval-valued functions; BOUNDS; CALCULUS;
D O I
10.1515/math-2021-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we introduce the notions about the Riemann-Liouville fractional integrals for interval-valued functions on co-ordinates. We also establish Hermite-Hadamard and some related inequalities for co-ordinated convex interval-valued functions by applying the newly defined fractional integrals. The results of the present paper are the extension of several previously published results.
引用
收藏
页码:1081 / 1097
页数:17
相关论文
共 43 条
[1]   Better Approaches forn-Times Differentiable Convex Functions [J].
Agarwal, Praveen ;
Kadakal, Mahir ;
Iscan, Imdat ;
Chu, Yu-Ming .
MATHEMATICS, 2020, 8 (06)
[2]   Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Akkurt, Abdullah ;
Chu, Yu-Ming .
OPEN MATHEMATICS, 2021, 19 :440-449
[3]   On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions [J].
Ali, Muhammad Aamir ;
Alp, Necmettin ;
Budak, Huseyin ;
Chu, Yu-Ming ;
Zhang, Zhiyue .
OPEN MATHEMATICS, 2021, 19 (01) :427-439
[4]   Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables [J].
Ali, Muhammad Aamir ;
Chu, Yu-Ming ;
Budak, Hueseyin ;
Akkurt, Abdullah ;
Yildirim, Hueseyin ;
Zahid, Manzoor Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[5]   New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions [J].
Ali, Muhammad Aamir ;
Abbas, Mujahid ;
Budak, Huseyin ;
Agarwal, Praveen ;
Murtaza, Ghulam ;
Chu, Yu-Ming .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[6]  
Ali MA, 2021, ADV DIFFER EQU-NY, V2021, DOI 10.1186/s13662-020-03163-1
[7]   Some new Simpson's type inequalities for coordinated convex functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Zhang, Zhiyue ;
Yildirim, Huseyin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4515-4540
[8]  
Breckner W. W., 1993, Rev. Anal. Numer. Theor. Approx., V22, P39
[9]   Some New Quantum Hermite-Hadamard-Like Inequalities for Coordinated Convex Functions [J].
Budak, Huseyin ;
Ali, Muhammad Aamir ;
Tarhanaci, Meliha .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) :899-910
[10]   Simpson and Newton type inequalities for convex functions via newly defined quantum integrals [J].
Budak, Huseyin ;
Erden, Samet ;
Ali, Muhammad Aamir .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) :378-390