Thickness effects of Ni on the modified boron doped diamond by thermal catalytic etching for non-enzymatic glucose sensing

被引:11
作者
Long, Hangyu [1 ,2 ]
Liu, Xuezhang [3 ]
Xie, Youneng [2 ]
Hu, Naixiu [2 ]
Deng, Zejun [2 ]
Jiang, Yunlu [2 ]
Wei, Qiuping [2 ,4 ]
Yu, Zhiming [2 ]
Zhang, Shugen [1 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Mat & Mech Engn, Nanchang 330013, Jiangxi, Peoples R China
[4] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Nickel; Thermal catalytic etching; Boron-doped diamond; Electrocatalysis; Glucose; Non-enzymatic; CARBON NANOTUBES; NANOPARTICLES; NICKEL; ELECTRODES; FILMS; FABRICATION; CONDUCTIVITY; DEPOSITION; BIOSENSORS; FE;
D O I
10.1016/j.jelechem.2018.11.018
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Sputtered nickel (Ni) layers modified boron-doped diamond (BDD) electrodes for non-enzymatic glucose sensor were fabricated by the thermal catalytic etching process in the hydrogen ambient. The effect of Ni thickness on the thermal catalytic etching and the electrochemical behavior of Ni/BDD electrodes for glucose oxidation were investigated. Scanning electron microscopy(SEM)and Raman spectroscopy were utilized to characterize the electrode morphology and composition, respectively. Marked by different thickness and morphology of Ni layer, three kinds of surfaces were obtained after thermal catalytic etching. The first is a roughened surface with most Ni nano-particles sinking into the BDD film, the second is with Ni micro-particles presented on the BDD film, the third is with residual lamellar Ni. Electrochemical results indicated that the electrochemical behaviors of those Ni/BDD electrodes were related to the surface structure. The second Ni/BDD electrode has the limit of detection (LOD) of 1.23 mu M with a sensitivity of 839.3 mu M-1 cm(2), which was ascribed to the numerous agglomerated Ni nano- and micro-particles presented on the roughed surface.
引用
收藏
页码:353 / 360
页数:8
相关论文
共 56 条
[1]   On the reaction kinetics of Ni with amorphous carbon [J].
Anton, R. .
CARBON, 2008, 46 (04) :656-662
[2]   Carbohydrates electrocatalytic oxidation using CNT-NiCo-oxide modified electrodes [J].
Arvinte, Adina ;
Sesay, Adama-Marie ;
Virtanen, Vesa .
TALANTA, 2011, 84 (01) :180-186
[3]   Metallic nanoparticles on plasma treated carbon nanotubes:: Nano2hybrids [J].
Bittencourt, C. ;
Felten, A. ;
Douhard, B. ;
Colomer, J.-F. ;
Van Tendeloo, G. ;
Drube, W. ;
Ghijsen, J. ;
Pireaux, J.-J. .
SURFACE SCIENCE, 2007, 601 (13) :2800-2804
[4]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[5]   Use of ultramicroelectrodes for determining lead in natural waters by stripping voltammetry [J].
Bumber, AA ;
Nechitailov, YN ;
Profatilova, IA ;
Ignatenko, EG .
JOURNAL OF ANALYTICAL CHEMISTRY, 2000, 55 (07) :666-668
[6]   Recent advances in electrochemical glucose biosensors: a review [J].
Chen, Chao ;
Xie, Qingji ;
Yang, Dawei ;
Xiao, Hualing ;
Fu, Yingchun ;
Tan, Yueming ;
Yao, Shouzhuo .
RSC ADVANCES, 2013, 3 (14) :4473-4491
[7]   Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing [J].
Choi, Taejin ;
Kim, Soo Hyeon ;
Lee, Chang Wan ;
Kim, Hangil ;
Choi, Sang-Kyung ;
Kim, Soo-Hyun ;
Kim, Eunkyoung ;
Park, Jusang ;
Kim, Hyungjun .
BIOSENSORS & BIOELECTRONICS, 2015, 63 :325-330
[8]   Hierarchical flower-like NiO hollow microspheres for non-enzymatic glucose sensors [J].
Cui, Zhenzhen ;
Yin, Haoyong ;
Nie, Qiulin ;
Qin, Dongyu ;
Wu, Weiwei ;
He, Xiaolong .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 757 :51-57
[9]   Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor [J].
Dai, Wei ;
Li, Mingji ;
Gao, Sumei ;
Li, Hongji ;
Li, Cuiping ;
Xu, Sheng ;
Wu, Xiaoguo ;
Yang, Baohe .
ELECTROCHIMICA ACTA, 2016, 187 :413-421
[10]   Transport properties of polycrystalline boron doped diamond [J].
de Oliveira, J. R. ;
Berengue, O. M. ;
Moro, J. ;
Ferreira, N. G. ;
Chiquito, A. J. ;
Baldan, M. R. .
APPLIED SURFACE SCIENCE, 2014, 311 :5-8