Localized State in Quantum Point Contacts: Possible Qubit Implementation?

被引:0
作者
Mourokh, Lev [1 ]
Ivanushkin, Pavel [1 ]
Bird, Jonathan [2 ]
机构
[1] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA
[2] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
关键词
Quantum Point Contact; Fano Resonance; Quantum Computation; SPIN POLARIZATION; ELECTRON-SPIN; FANO RESONANCES; CONDUCTANCE; TRANSPORT;
D O I
10.1166/jctn.2011.1703
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We discuss a possible implementation of a quantum bit as a localized state self-consistently formed in quantum point contacts (QPCs) near pinch-off conditions. Such formation has been connected to the so-called 0.7-anomaly, an additional feature observed in QPCs' conductance below the first quantized step. We report experimental data showing a clear peak in the conductance of another (detector) QPC in close proximity to a QPC driven to pinch-off. This peak is visible for temperatures up to 35 K. We attribute this peak to a Fano resonance when the direct path for electrons from the source to the drain through the detector QPC coherently interfere with the path via a localized state in the pinched-off (swept) QPC. To support such a conclusion, we perform a theoretical analysis based on the equations of motion for electron operators, reproducing all essential features of experiment. Also, we discuss possible advantages of a qubit based on that localized state in comparison to the standard quantum dot case.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 50 条
  • [41] Complete state tomography of a quantum dot spin qubit
    Cogan, Dan
    Peniakov, Giora
    Su, Zu-En
    Gershoni, David
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [42] Electric-field control of magnetization in biased semiconductor quantum wires and point contacts
    Lind, H.
    Yakimenko, I. I.
    Berggren, K. -F.
    PHYSICAL REVIEW B, 2011, 83 (07):
  • [43] Quantum tomography of an entangled three-qubit state in silicon
    Takeda, Kenta
    Noiri, Akito
    Nakajima, Takashi
    Yoneda, Jun
    Kobayashi, Takashi
    Tarucha, Seigo
    NATURE NANOTECHNOLOGY, 2021, 16 (09) : 965 - +
  • [44] Evidence for charging effects in CdTe/CdMgTe quantum point contacts
    Czapkiewicz, M.
    Kolkovsky, V.
    Nowicki, P.
    Wiater, M.
    Wojciechowski, T.
    Wojtowicz, T.
    Wrobel, J.
    PHYSICAL REVIEW B, 2012, 86 (16):
  • [45] Conductance oscillations in quantum point contacts of InAs/GaSb heterostructures
    Papaj, Michal
    Cywinski, Lukasz
    Wrobel, Jerzy
    Dietl, Tomasz
    PHYSICAL REVIEW B, 2016, 93 (19)
  • [46] Fabrication and characterisation of gallium arsenide ambipolar quantum point contacts
    Chen, J. C. H.
    Klochan, O.
    Micolich, A. P.
    Das Gupta, K.
    Sfigakis, F.
    Ritchie, D. A.
    Trunov, K.
    Reuter, D.
    Wieck, A. D.
    Hamilton, A. R.
    APPLIED PHYSICS LETTERS, 2015, 106 (18)
  • [47] Microscopic origin of the '0.7-anomaly' in quantum point contacts
    Bauer, Florian
    Heyder, Jan
    Schubert, Enrico
    Borowsky, David
    Taubert, Daniela
    Bruognolo, Benedikt
    Schuh, Dieter
    Wegscheider, Werner
    von Delft, Jan
    Ludwig, Stefan
    NATURE, 2013, 501 (7465) : 73 - 78
  • [48] Giant Terahertz Photoconductance of Quantum Point Contacts in the Tunneling Regime
    Otteneder, M.
    Kvon, Z. D.
    Tkachenko, O. A.
    Tkachenko, V. A.
    Jaroshevich, A. S.
    Rodyakina, E. E.
    Latyshev, A. V.
    Ganichev, S. D.
    PHYSICAL REVIEW APPLIED, 2018, 10 (01):
  • [49] Characterization of individual conductance steps in metallic quantum point contacts
    van den Brom, HE
    Yanson, AI
    van Ruitenbeek, JM
    PHYSICA B-CONDENSED MATTER, 1998, 252 (1-2) : 69 - 75
  • [50] Impact of vacancies on twisted bilayer graphene quantum point contacts
    Moles, Pablo
    Dominguez-Adame, Francisco
    Chico, Leonor
    PHYSICAL REVIEW B, 2024, 109 (04)