Localized State in Quantum Point Contacts: Possible Qubit Implementation?

被引:0
作者
Mourokh, Lev [1 ]
Ivanushkin, Pavel [1 ]
Bird, Jonathan [2 ]
机构
[1] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA
[2] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
关键词
Quantum Point Contact; Fano Resonance; Quantum Computation; SPIN POLARIZATION; ELECTRON-SPIN; FANO RESONANCES; CONDUCTANCE; TRANSPORT;
D O I
10.1166/jctn.2011.1703
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We discuss a possible implementation of a quantum bit as a localized state self-consistently formed in quantum point contacts (QPCs) near pinch-off conditions. Such formation has been connected to the so-called 0.7-anomaly, an additional feature observed in QPCs' conductance below the first quantized step. We report experimental data showing a clear peak in the conductance of another (detector) QPC in close proximity to a QPC driven to pinch-off. This peak is visible for temperatures up to 35 K. We attribute this peak to a Fano resonance when the direct path for electrons from the source to the drain through the detector QPC coherently interfere with the path via a localized state in the pinched-off (swept) QPC. To support such a conclusion, we perform a theoretical analysis based on the equations of motion for electron operators, reproducing all essential features of experiment. Also, we discuss possible advantages of a qubit based on that localized state in comparison to the standard quantum dot case.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 50 条
  • [1] Freely suspended quantum point contacts
    Roessler, C.
    Herz, M.
    Bichler, M.
    Ludwig, S.
    SOLID STATE COMMUNICATIONS, 2010, 150 (17-18) : 861 - 864
  • [2] Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts
    Wan, J.
    Cahay, M.
    Debray, P.
    Newrock, R.
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [3] Quantum point contacts as a subject of the theory of quantum size effects
    Bezak, Viktor
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (05)
  • [4] Transport Through Magnetic Quantum Point Contacts
    Day, Timothy E.
    Cummings, Aron W.
    Burke, Adam M.
    Ferry, David K.
    Goodnick, Stephen M.
    Reno, John L.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 911 - 914
  • [5] Flux qubit with a quantum point contact
    Lantz, J
    Shumeiko, VS
    Bratus, E
    Wendin, G
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 368 (1-4): : 315 - 319
  • [6] Superconducting quantum point contacts
    Bretheau, L.
    Girit, C.
    Tosi, L.
    Goffman, M.
    Joyez, P.
    Pothier, H.
    Esteve, D.
    Urbina, C.
    COMPTES RENDUS PHYSIQUE, 2012, 13 (01) : 89 - 100
  • [7] Interplay of fractional quantum Hall states and localization in quantum point contacts
    Baer, S.
    Roessler, C.
    de Wiljes, E. C.
    Ardelt, P. -L.
    Ihn, T.
    Ensslin, K.
    Reichl, C.
    Wegscheider, W.
    PHYSICAL REVIEW B, 2014, 89 (08)
  • [8] Probing dopants in wide semiconductor quantum point contacts
    Yakimenko, I. I.
    Berggren, K-F
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (10)
  • [9] Сonductance Quantization Features in Multichannel Quantum Point Contacts
    Pokhabov, D. A.
    Pogosov, A. G.
    Shevyrin, A. A.
    Zhdanov, E. Yu.
    Bakarov, A. K.
    JETP LETTERS, 2024, 119 (05) : 380 - 388
  • [10] Electrostatically Induced Quantum Point Contacts in Bilayer Graphene
    Overweg, Hiske
    Eggimann, Hannah
    Chen, Xi
    Slizovskiy, Sergey
    Eich, Marius
    Pisoni, Riccardo
    Lee, Yongjin
    Rickhaus, Peter
    Watanabe, Kenji
    Taniguch, Takashi
    Fal'ko, Vladimir
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2018, 18 (01) : 553 - 559