Fluid Dynamics Experiments for Planetary Interiors

被引:21
|
作者
Le Bars, Michael [1 ]
Barik, Ankit [2 ]
Burmann, Fabian [3 ]
Lathrop, Daniel P. [4 ]
Noir, Jerome [3 ]
Schaeffer, Nathanael [5 ]
Triana, Santiago A. [6 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, IRPHE UMR 7342, F-13013 Marseille, France
[2] Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21210 USA
[3] Swiss Fed Inst Technol, Inst Geophys, Sonnegstr 5, CH-8092 Zurich, Switzerland
[4] Univ Maryland, College Pk, MD 20742 USA
[5] Univ Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble, France
[6] Royal Observ Belgium, Ave Circulaire 3, B-1180 Uccle, Belgium
关键词
Planetary cores; Subsurface oceans; Rotational fluid dynamics; Waves; Instabilities; Turbulence; CORE-MANTLE BOUNDARY; CONCENTRIC ROTATING SPHERES; VISCOUS INCOMPRESSIBLE-FLOW; SPHERICAL COUETTE-FLOW; NON-AXISYMMETRICAL INSTABILITIES; DIPOLAR MAGNETIC-FIELD; INERTIAL WAVES; ENERGY-DISSIPATION; STEWARTSON-LAYER; ELLIPTIC INSTABILITY;
D O I
10.1007/s10712-021-09681-1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Understanding fluid flows in planetary cores and subsurface oceans, as well as their signatures in available observational data (gravity, magnetism, rotation, etc.), is a tremendous interdisciplinary challenge. In particular, it requires understanding the fundamental fluid dynamics involving turbulence and rotation at typical scales well beyond our day-to-day experience. To do so, laboratory experiments are fully complementary to numerical simulations, especially in systematically exploring extreme flow regimes for long duration. In this review article, we present some illustrative examples where experimental approaches, complemented by theoretical and numerical studies, have been key for a better understanding of planetary interior flows driven by some type of mechanical forcing. We successively address the dynamics of flows driven by precession, by libration, by differential rotation, and by boundary topography.
引用
收藏
页码:229 / 261
页数:33
相关论文
共 50 条
  • [1] Fluid Dynamics Experiments for Planetary Interiors
    Michael Le Bars
    Ankit Barik
    Fabian Burmann
    Daniel P. Lathrop
    Jerome Noir
    Nathanael Schaeffer
    Santiago A. Triana
    Surveys in Geophysics, 2022, 43 : 229 - 261
  • [2] Fluid helium at conditions of giant planetary interiors
    Stixrude, Lars
    Jeanloz, Raymond
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (32) : 11071 - 11075
  • [3] On the viscous damping of inertial oscillation in planetary fluid interiors
    Liao, XH
    Zhang, K
    Earnshaw, P
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2001, 128 (1-4) : 125 - 136
  • [4] ŒDIPUS:: a new tool to study the dynamics of planetary interiors
    Choblet, G.
    Cadek, O.
    Couturier, F.
    Dumoulin, C.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 170 (01) : 9 - 30
  • [5] PLANETARY INTERIORS
    WOOD, JA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (07): : I468 - &
  • [6] PLANETARY INTERIORS
    PHILLIPS, RJ
    GEOTIMES, 1979, 24 (06): : 20 - 22
  • [7] PLANETARY INTERIORS
    SONETT, CP
    GEOTIMES, 1978, 23 (06): : 23 - 25
  • [8] Dynamics and magnetic fields of the Earth and planetary interiors - Preface
    Jones, CA
    Soward, AM
    Zhang, K
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2001, 128 (1-4) : 1 - 1
  • [9] Frontiers of the physics of dense plasmas and planetary interiors: Experiments, theory, and applications
    Fortney, J. J.
    Glenzer, S. H.
    Koenig, M.
    Militzer, B.
    Saumon, D.
    Valencia, D.
    PHYSICS OF PLASMAS, 2009, 16 (04)
  • [10] Modeling planetary interiors in laser based experiments using shockless compression
    Hawreliak, J.
    Colvin, J.
    Eggert, J.
    Kalantar, D. H.
    Lorenzana, H. E.
    Pollaine, S.
    Rosolankova, K.
    Remington, B. A.
    Stolken, J.
    Wark, J. S.
    ASTROPHYSICS AND SPACE SCIENCE, 2007, 307 (1-3) : 285 - 289