Estimation of cardiac phases in echographic images using multiple models

被引:0
|
作者
Nascimento, J [1 ]
Marques, JS [1 ]
Sanches, J [1 ]
机构
[1] Univ Tecn Lisboa, Inst Sistemas & Robot, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an algorithm for tracking the left ventricle in echocardiographic sequences, using multiple models. The use of multiple dynamic models is appropriate since the heart motion presents two phases (diastole and systole) with different dynamics. The main difficulty concerns the low contrast and speckle noise present in ultrasound images. To overcome this problem a robust multiple model tracker is used, based on a bank of nonlinear filters, organized in a tree structure. This algorithm determines which model is active at each instant of time and updates its state by propagating the probability distribution, using robust estimation techniques. It is shown in the paper that the proposed algorithm simultaneously copes with several dynamic models and with outliers. Furthermore the proposed algorithm provides high level information that is not available when a single model is used.
引用
收藏
页码:149 / 152
页数:4
相关论文
共 50 条
  • [31] Motion estimation of tagged cardiac magnetic resonance images using variational techniques
    Carranza-Herrezuelo, N.
    Bajo, A.
    Sroubek, F.
    Santamarta, C.
    Cristobal, G.
    Santos, A.
    Ledesma-Carbayo, M. J.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2010, 34 (06) : 514 - 522
  • [32] Robust Optical Flow Estimation in Cardiac Ultrasound Images Using a Sparse Representation
    Ouzir, Nora
    Basarab, Adrian
    Lairez, Olivier
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (03) : 741 - 752
  • [33] Analyzing hyperspectral images into multiple subspaces using Gaussian mixture models
    Spence, Clay D.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840
  • [34] Bayesian Estimation of Geometric Morphometric Landmarks for Simultaneous Localization of Multiple Anatomies in Cardiac CT Images
    Jeon, Byunghwan
    Jung, Sunghee
    Shim, Hackjoon
    Chang, Hyuk-Jae
    ENTROPY, 2021, 23 (01) : 1 - 14
  • [35] DIRECTIONAL DESCRIPTORS USING ZERNIKE MOMENT PHASES FOR OBJECT ORIENTATION ESTIMATION IN UNDERWATER SONAR IMAGES
    Kumar, Naveen
    Lammert, Adam C.
    Englot, Brendan
    Hover, Franz S.
    Narayanan, Shrikanth S.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1025 - 1028
  • [36] Analysis of RF signals in echographic images using a regularized autoregressive model.
    Gorce, JM
    Friboulet, D
    Robini, M
    Bijnens, B
    Magnin, IE
    CAR '97 - COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1997, 1134 : 981 - 981
  • [37] ON-LINE ESTIMATION OF CARDIAC OUTPUT USING RESPIRATORY MODELS AND MEASUREMENTS
    BEKEY, GA
    MALONEY, JC
    FEDERATION PROCEEDINGS, 1970, 29 (02) : A946 - +
  • [38] Multiple models estimation and control
    Stecha, J
    Havlena, V
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VI, PROCEEDINGS: INDUSTRIAL SYSTEMS AND ENGINEERING I, 2002, : 248 - 253
  • [39] Simultaneous estimation of multiple phases in digital holographic interferometry using state space analysis
    Kulkarni, Rishikesh
    Rastogi, Pramod
    OPTICS AND LASERS IN ENGINEERING, 2018, 104 : 109 - 116
  • [40] Improved reproducibility of right ventricular volumes and function estimation from cardiac magnetic resonance images using level-set models
    Catalano, Oronzo
    Corsi, Cristiana
    Antonaci, Serena
    Moro, Guido
    Mussida, Maria
    Frascaroli, Mauro
    Baldi, Maurizia
    Caiani, Enrico
    Lamberti, Claudio
    Cobelli, Franco
    MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (03) : 600 - 605