Estimation of cardiac phases in echographic images using multiple models

被引:0
|
作者
Nascimento, J [1 ]
Marques, JS [1 ]
Sanches, J [1 ]
机构
[1] Univ Tecn Lisboa, Inst Sistemas & Robot, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an algorithm for tracking the left ventricle in echocardiographic sequences, using multiple models. The use of multiple dynamic models is appropriate since the heart motion presents two phases (diastole and systole) with different dynamics. The main difficulty concerns the low contrast and speckle noise present in ultrasound images. To overcome this problem a robust multiple model tracker is used, based on a bank of nonlinear filters, organized in a tree structure. This algorithm determines which model is active at each instant of time and updates its state by propagating the probability distribution, using robust estimation techniques. It is shown in the paper that the proposed algorithm simultaneously copes with several dynamic models and with outliers. Furthermore the proposed algorithm provides high level information that is not available when a single model is used.
引用
收藏
页码:149 / 152
页数:4
相关论文
共 50 条
  • [21] Volume estimation from sparse planar images using deformable models
    Dept. of Med. Phys. and Bioeng., University College Hospital, London WC1E 6AJ, United Kingdom
    不详
    不详
    Image Vision Comput, 8 (559-565):
  • [22] Recursive estimation of images using non-gaussian autoregressive models
    Kadaba, SR
    Gelfand, SB
    Kashyap, RL
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (10) : 1439 - 1452
  • [23] Crane pose estimation using deep learning models and synthetic images
    Park G.
    Hong H.
    Jeong H.
    Kang H.
    Won M.
    Journal of Institute of Control, Robotics and Systems, 2021, 27 (04) : 312 - 319
  • [24] Volume estimation from sparse planar images using deformable models
    Ruff, CF
    Hughes, SW
    Hawkes, DJ
    IMAGE AND VISION COMPUTING, 1999, 17 (08) : 559 - 565
  • [26] Optimal selection of estimates for parameter estimation using multiple models
    Li, XR
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 1052 - 1053
  • [27] Transition moving horizon estimation using multiple linear models
    Zhao, HY
    Chen, H
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 520 - 525
  • [28] Identifying phenological phases in strawberry using multiple change-point models
    Labadie, Marc
    Denoyes, Beatrice
    Guedon, Yann
    JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (20) : 5687 - 5701
  • [29] Optical flow estimation in cardiac CT images using the steered Hermite transform
    Moya-Albor, Ernesto
    Escalante-Ramirez, Boris
    Vallejo, Enrique
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (03) : 267 - 291
  • [30] Incompressible Cardiac Motion Estimation of the Left Ventricle Using Tagged MR Images
    Liu, Xiaofeng
    Abd-Elmoniem, Khaled Z.
    Prince, Jerry L.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS, 2009, 5762 : 331 - +