Nonparametric estimation of the stationary density and the transition density of a Markov chain

被引:13
作者
Lacour, Claire [1 ]
机构
[1] Univ Paris 05, CNRS, MAP5, UMR8145, F-75270 Paris, France
关键词
adaptive estimation; Markov chain-; stationary density; transition density; model selection; penalized contrast; projection estimators;
D O I
10.1016/j.spa.2007.04.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study first the problem of nonparametric estimation of the stationary density f of a discrete-time Markov chain (X-i). We consider a collection of projection estimators on finite dimensional linear spaces. We select an estimator among the collection by minimizing a penalized contrast. The same technique enables us to estimate the density g of (X-i, Xi+1) and so to provide an adaptive estimator of the transition density pi = g/f. We give bounds in L-2 norm for these estimators and we show that they are adaptive in the minimax sense over a large class of Besov spaces. Some examples and simulations are also provided. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:232 / 260
页数:29
相关论文
共 50 条
[41]   Markov chain estimation of avian seasonal fecundity [J].
Etterson, Matthew A. ;
Bennett, Richard S. ;
Kershner, Eric L. ;
Walk, Jeffery W. .
ECOLOGICAL APPLICATIONS, 2009, 19 (03) :622-630
[42]   Markov chain Monte Carlo estimation of quantiles [J].
Doss, Charles R. ;
Flegal, James M. ;
Jones, Galin L. ;
Neath, Ronald C. .
ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 :2448-2478
[43]   Non parametric estimation of transition density for second-order diffusion processes [J].
Li, Yue ;
Wang, Yunyan ;
Tang, Mingtian .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (16) :5840-5852
[44]   Nonparametric confidence intervals for the integral of a function of an unknown density [J].
Withers, Christopher S. ;
Nadarajah, Saralees .
JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (04) :943-966
[45]   Quotients of Markov chains and asymptotic properties of the stationary distribution of the Markov chain associated to an evolutionary algorithm [J].
Boris Mitavskiy ;
Jonathan E. Rowe ;
Alden Wright ;
Lothar M. Schmitt .
Genetic Programming and Evolvable Machines, 2008, 9 :109-123
[46]   Statistical downscaling model for future projection of daily IDF relationship by Markov chain and kernel density estimator [J].
Halder, Subrata ;
Saha, Ujjwal .
JOURNAL OF WATER AND CLIMATE CHANGE, 2024, 15 (10) :5002-5020
[47]   Quotients of Markov chains and asymptotic properties of the stationary distribution of the Markov chain associated to an evolutionary algorithm [J].
Mitavskiy, Boris ;
Rowe, Jonathan E. ;
Wright, Alden ;
Schmitt, Lothar M. .
GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2008, 9 (02) :109-123
[48]   On the design of nonparametric runs-rules schemes using the Markov chain approach [J].
Shongwe, Sandile C. .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (05) :1604-1621
[49]   Inverse Problem of Censored Markov Chain: Estimating Markov Chain Parameters from Censored Transition Data [J].
Kohjima, Masahiro ;
Kurashima, Takeshi ;
Toda, Hiroyuki .
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II, 2023, 13936 :297-308
[50]   Stationary density function for a random evolution driven by a Markov-switching Ornstein-Uhlenbeck process with finite velocity [J].
Pogorui, Anatoliy A. ;
Rodriguez-Dagnino, Ramon M. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (02) :113-120