Nonparametric estimation of the stationary density and the transition density of a Markov chain

被引:13
作者
Lacour, Claire [1 ]
机构
[1] Univ Paris 05, CNRS, MAP5, UMR8145, F-75270 Paris, France
关键词
adaptive estimation; Markov chain-; stationary density; transition density; model selection; penalized contrast; projection estimators;
D O I
10.1016/j.spa.2007.04.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study first the problem of nonparametric estimation of the stationary density f of a discrete-time Markov chain (X-i). We consider a collection of projection estimators on finite dimensional linear spaces. We select an estimator among the collection by minimizing a penalized contrast. The same technique enables us to estimate the density g of (X-i, Xi+1) and so to provide an adaptive estimator of the transition density pi = g/f. We give bounds in L-2 norm for these estimators and we show that they are adaptive in the minimax sense over a large class of Besov spaces. Some examples and simulations are also provided. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:232 / 260
页数:29
相关论文
共 50 条
  • [31] Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion
    Bertin, Karine
    Klutchnikoff, Nicolas
    Panloup, Fabien
    Varvenne, Maylis
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 271 - 300
  • [32] Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion
    Karine Bertin
    Nicolas Klutchnikoff
    Fabien Panloup
    Maylis Varvenne
    [J]. Statistical Inference for Stochastic Processes, 2020, 23 : 271 - 300
  • [33] Adaptive Density Estimation of Stationary beta-Mixing and tau-Mixing Processes
    Lerasle, M.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2009, 18 (01) : 59 - 83
  • [34] Density Estimation for RWRE
    Havet, A.
    Lerasle, M.
    Moulines, E.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2019, 28 (01) : 18 - 38
  • [35] Density Estimation for RWRE
    A. Havet
    M. Lerasle
    É. Moulines
    [J]. Mathematical Methods of Statistics, 2019, 28 : 18 - 38
  • [36] IMAGE TAMPERING DETECTION BASED ON STATIONARY DISTRIBUTION OF MARKOV CHAIN
    Wang, Wei
    Dong, Jing
    Tan, Tieniu
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2101 - 2104
  • [37] Exact asymptotics for the stationary distribution of a Markov chain: a production model
    Adan, Ivo
    Foley, Robert D.
    McDonald, David R.
    [J]. QUEUEING SYSTEMS, 2009, 62 (04) : 311 - 344
  • [38] Exact asymptotics for the stationary distribution of a Markov chain: a production model
    Ivo Adan
    Robert D. Foley
    David R. McDonald
    [J]. Queueing Systems, 2009, 62 : 311 - 344
  • [39] The eigenvalues of the empirical transition matrix of a Markov chain
    Pritchard, G
    Scott, DJ
    [J]. JOURNAL OF APPLIED PROBABILITY, 2004, 41A : 347 - 360
  • [40] Minimax bounds for Besov classes in density estimation
    Sart, Mathieu
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 3184 - 3216