Nonparametric estimation of the stationary density and the transition density of a Markov chain

被引:14
作者
Lacour, Claire [1 ]
机构
[1] Univ Paris 05, CNRS, MAP5, UMR8145, F-75270 Paris, France
关键词
adaptive estimation; Markov chain-; stationary density; transition density; model selection; penalized contrast; projection estimators;
D O I
10.1016/j.spa.2007.04.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study first the problem of nonparametric estimation of the stationary density f of a discrete-time Markov chain (X-i). We consider a collection of projection estimators on finite dimensional linear spaces. We select an estimator among the collection by minimizing a penalized contrast. The same technique enables us to estimate the density g of (X-i, Xi+1) and so to provide an adaptive estimator of the transition density pi = g/f. We give bounds in L-2 norm for these estimators and we show that they are adaptive in the minimax sense over a large class of Besov spaces. Some examples and simulations are also provided. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:232 / 260
页数:29
相关论文
共 43 条
[21]  
Hernandez-Lerma O., 1988, BOL SOC MAT MEXICANA, V33, P57
[22]  
HOPFNER R, 2003, LIMIT THEOREMS NULL
[23]  
Ibragimov I.'d. A., 1980, Zapiski Nauchnykh Seminarov POMI, V98, P61
[24]  
Ibragimov IA., 1980, Zap Nauchn Sem Leningrad Otdel Mat Inst Steklov (LOMI), V98, P61
[25]   Geometric ergodicity of Metropolis algorithms [J].
Jarner, SF ;
Hansen, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 85 (02) :341-361
[26]   Detecting multiple change-points in the mean of Gaussian process by model selection [J].
Lebarbier, E .
SIGNAL PROCESSING, 2005, 85 (04) :717-736
[27]  
Liebscher E., 1992, STATISTICS, V23, P27
[28]   STRONG CONSISTENCY AND RATES FOR RECURSIVE PROBABILITY DENSITY ESTIMATORS OF STATIONARY-PROCESSES [J].
MASRY, E ;
GYORFI, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 22 (01) :79-93
[29]  
Meyer Y., 1990, ONDELETTES OPERATEUR
[30]  
Meyn S.P., 1993, MARKOV CHAINS STOCHA, DOI 10.1007/978-1-4471-3267-7