Nonparametric estimation of the stationary density and the transition density of a Markov chain

被引:14
作者
Lacour, Claire [1 ]
机构
[1] Univ Paris 05, CNRS, MAP5, UMR8145, F-75270 Paris, France
关键词
adaptive estimation; Markov chain-; stationary density; transition density; model selection; penalized contrast; projection estimators;
D O I
10.1016/j.spa.2007.04.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study first the problem of nonparametric estimation of the stationary density f of a discrete-time Markov chain (X-i). We consider a collection of projection estimators on finite dimensional linear spaces. We select an estimator among the collection by minimizing a penalized contrast. The same technique enables us to estimate the density g of (X-i, Xi+1) and so to provide an adaptive estimator of the transition density pi = g/f. We give bounds in L-2 norm for these estimators and we show that they are adaptive in the minimax sense over a large class of Besov spaces. Some examples and simulations are also provided. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:232 / 260
页数:29
相关论文
共 43 条
[1]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[2]  
Basu A. K., 1998, Bulletin of Informatics and Cybernetics, V30, P25
[3]   Minimum contrast estimators on sieves: exponential bounds and rates of convergence [J].
Birge, L ;
Massart, P .
BERNOULLI, 1998, 4 (03) :329-375
[4]  
BIRGE L., 1997, FESTSCHRIFT L LECAM, P55
[5]   Minimal penalties for Gaussian model selection [J].
Birge, Lucien ;
Massart, Pascal .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (1-2) :33-73
[6]  
BOSQ D, 1973, CR ACAD SCI A MATH, V277, P535
[7]   Computable infinite-dimensional filters with applications to discretized diffusion processes [J].
Chaleyat-Maurel, Mireille ;
Genon-Catalot, Valentine .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (10) :1447-1467
[8]  
CLEMENCON S, 2000, MATH METHODS STAT, V9, P323
[9]  
CLEMENCON S, 1999, THESIS U DENIS DIDER
[10]   A new algorithm for fixed design regression and denoising [J].
Comte, F ;
Rozenholc, Y .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (03) :449-473