GENERALIZED MULTIVARIATE PRABHAKAR TYPE FRACTIONAL INTEGRALS AND INEQUALITIES

被引:0
作者
Anastassiou, George A. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Prabhakar fractional integral; Hardy inequality; generalized fractional integral; convexity; CALCULUS;
D O I
10.54379/JIASF-2021-4-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce here the mixed generalized multivariate Prabhakar type left and right fractional integrals and study their basic properties, such as preservation of continuity and their boundedness as positive linear operators. Then we produce an interesting variety of related multivariate left and right fractional Hardy type inequalities under convexity. We introduce also other related multivariate fractional integrals.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 16 条
  • [11] Polito F., 2016, Fract Differ Calc, V6, P73, DOI [10.7153/fdc-06-05, DOI 10.7153/FDC-06-05]
  • [12] Prabhakar T.R., 1971, Yokohama Math. J, V19, P7
  • [13] Multivariate analogue of generalized Mittag-Leffler function
    Saxena, R. K.
    Kalla, S. L.
    Saxena, Ravi
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 533 - 548
  • [14] Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
    Srivastava, H. M.
    Tomovski, Zivorad
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 198 - 210
  • [15] Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions
    Tomovski, Zivorad
    Hilfer, Rudolf
    Srivastava, H. M.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (11) : 797 - 814
  • [16] Yang X-J, 2019, General Fractional Derivatives: Theory, Methods and Applications, V1st