GENERALIZED MULTIVARIATE PRABHAKAR TYPE FRACTIONAL INTEGRALS AND INEQUALITIES

被引:0
作者
Anastassiou, George A. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Prabhakar fractional integral; Hardy inequality; generalized fractional integral; convexity; CALCULUS;
D O I
10.54379/JIASF-2021-4-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce here the mixed generalized multivariate Prabhakar type left and right fractional integrals and study their basic properties, such as preservation of continuity and their boundedness as positive linear operators. Then we produce an interesting variety of related multivariate left and right fractional Hardy type inequalities under convexity. We introduce also other related multivariate fractional integrals.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 16 条
[1]  
Anastassiou G.A., 2013, ADV APPL MATH APPROX, P21
[2]  
Anastassiou G.A., 2016, Intelligent Comparisons: Analytic Inequalities
[3]  
Anastassiou G.A., 2021, FDN GEN PRABHAKAR HI
[4]   A PRACTICAL GUIDE TO PRABHAKAR FRACTIONAL CALCULUS [J].
Giusti, Andrea ;
Colombaro, Ivano ;
Garra, Roberto ;
Garrappa, Roberto ;
Polito, Federico ;
Popolizio, Marina ;
Mainardi, Francesco .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (01) :9-54
[5]  
Goren~o R., 2014, MITTAG LEER FUNCTION
[6]  
Hardy G.H., 1918, MESSENGER MATH, V47, P145
[7]  
Hewith E., 1965, REAL ABSTRACT ANAL
[8]   On an Inequality of H. G. Hardy [J].
Iqbal, Sajid ;
Krulic, Kristina ;
Pecaric, Josip .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
[9]   ON AN INEQUALITY FOR CONVEX FUNCTIONS WITH SOME APPLICATIONS ON FRACTIONAL DERIVATIVES AND FRACTIONAL INTEGRALS [J].
Iqbal, Sajid ;
Krulic, Kristina ;
Pecaric, Josip .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (02) :219-230
[10]   Generalized Mittag-Leffler function and generalized fractional calculus operators [J].
Kilbas, AA ;
Saigo, M ;
Saxena, RK .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) :31-49