Homotopic transformations of combinatorial maps

被引:0
|
作者
Marchadier, J [1 ]
Kropatsch, WG [1 ]
Hanbury, A [1 ]
机构
[1] PRIP, A-1040 Vienna, Austria
来源
DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS | 2003年 / 2886卷
关键词
homotopy; skeletonization; combinatorial map;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this contribution, we propose the notion of homotopy for both combinatorial maps and weighted combinatorial maps. We also describe transformations that are homotopic in the defined sense. The usefulness of the concept introduced is illustrated using two applications. The first one consists in calculating a skeleton using homotopic transformations of weighted combinatorial maps. The result is a compact combinatorial map describing the structure of the skeleton which may be viewed as a "combinatorial map skeleton". The second application consists in run length encoding of all the regions described by a combinatorial map. Although these demonstrations are defined on combinatorial maps defined on a square grid, the major insights of the paper are independent of the embedding.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [1] Are Two Given Maps Homotopic? An Algorithmic Viewpoint
    M. Filakovský
    L. Vokřínek
    Foundations of Computational Mathematics, 2020, 20 : 311 - 330
  • [2] Are Two Given Maps Homotopic? An Algorithmic Viewpoint
    Filakovsky, M.
    Vokrinek, L.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (02) : 311 - 330
  • [3] Signatures of Combinatorial Maps
    Gosselin, Stephane
    Damiand, Guillaume
    Solnon, Christine
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2009, 5852 : 370 - 382
  • [4] Joint Tree of Combinatorial Maps
    Wang, Tao
    Lang, Congyan
    Feng, Songhe
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2014, 8643 : 22 - 28
  • [5] A distance measure between labeled combinatorial maps
    Wang, Tao
    Dai, Guojun
    Ni, Bingbing
    Xu, De
    Siewe, Francois
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (12) : 1168 - 1177
  • [6] A generic implementation of dD combinatorial maps in CGAL
    Damiand, Guillaume
    Teillaud, Monique
    23RD INTERNATIONAL MESHING ROUNDTABLE (IMR23), 2014, 82 : 46 - 58
  • [7] Efficient search of combinatorial maps using signatures
    Gosselin, Stephane
    Damiand, Guillaume
    Solnon, Christine
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (15) : 1392 - 1405
  • [8] The first homotopic Baire class of maps with values in ANR's coincides with the first Baire class
    Karlova, Olena
    Maksymenko, Sergiy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)
  • [9] Homotopic database animation
    Kodama, T
    Kunii, TL
    CA 2002: PROCEEDINGS OF THE COMPUTER ANIMATION 2002, 2002, : 89 - 97
  • [10] An error-tolerant approximate matching algorithm for labeled combinatorial maps
    Wang, Tao
    Yang, Hua
    Lang, Congyan
    Feng, Songhe
    NEUROCOMPUTING, 2015, 156 : 211 - 220