Suppressed non-Gaussianity in the curvaton model

被引:7
|
作者
Mukaida, Kyohei [1 ]
Nakayama, Kazunori [1 ,2 ]
Takimoto, Masahiro [1 ]
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] Univ Tokyo, Kavli Inst Phys & Math Universe, Todai Inst Adv Study, Kashiwa, Chiba 2778583, Japan
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 12期
关键词
PERTURBATIONS; HORIZON;
D O I
10.1103/PhysRevD.89.123515
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the local type non-Gaussianity in a class of curvaton models is suppressed, i.e., the nonlinearity parameters f(NL) and those related with higher order statistics can be at most O(1), even if the curvaton energy density is subdominant at the decay. This situation is naturally realized in a very simple curvaton potential with quadratic term plus quartic term.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Signatures of non-Gaussianity in the curvaton model
    Enqvist, Kari
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (09):
  • [2] Isocurvature, non-Gaussianity, and the curvaton model
    Beltran, Maria
    PHYSICAL REVIEW D, 2008, 78 (02):
  • [3] Non-Gaussianity of the primordial perturbation in the curvaton model
    Sasaki, Misao
    Valiviita, Jussi
    Wands, David
    PHYSICAL REVIEW D, 2006, 74 (10)
  • [4] Non-Gaussianity in the curvaton scenario
    Bartolo, N
    Matarrese, S
    Riotto, A
    PHYSICAL REVIEW D, 2004, 69 (04):
  • [5] Non-Gaussianity in the inflating curvaton
    Enomoto, Seishi
    Kohri, Kazunori
    Matsuda, Tomohiro
    PHYSICAL REVIEW D, 2013, 87 (12):
  • [6] Scale-dependence of non-Gaussianity in the curvaton model
    Byrnes, Christian T.
    Enqvist, Kari
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (09):
  • [7] Non-Gaussianity in a three-fluid curvaton model
    Multamaki, T.
    Sainio, J.
    Vilja, I.
    PHYSICAL REVIEW D, 2009, 79 (10):
  • [8] Non-Gaussianity from attractor curvaton
    Harigaya, Keisuke
    Ibe, Masahiro
    Kawasaki, Masahiro
    Yanagida, Tsutomu T.
    PHYSICAL REVIEW D, 2013, 87 (06)
  • [9] Non-Gaussianity from axionic curvaton
    Kawasaki, Masahiro
    Kobayashi, Takeshi
    Takahashi, Fuminobu
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (03):
  • [10] A numerical study of non-Gaussianity in the curvaton scenario
    Malik, Karim A.
    Lyth, David H.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2006, (09):