Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry

被引:60
作者
Chen, Jun [1 ]
Lin, Ning [1 ,2 ,3 ]
Huang, Jin [1 ]
Dufresne, Alain [2 ,3 ]
机构
[1] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[2] Univ Grenoble Alpes, LGP2, F-38000 Grenoble, France
[3] CNRS, LGP2, F-38000 Grenoble, France
基金
中国国家自然科学基金;
关键词
SURFACE; POLYURETHANE; NANOCELLULOSE; REINFORCEMENT;
D O I
10.1039/c5py00367a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A series of reactive GAP (glycidyl azide polymer)/PTPB (propargyl-terminated polybutadiene) nanocomposites reinforced by alkynylated cellulose nanocrystals (ACNC) were synthesized by Huisgen click chemistry. High-efficiency substitution (more than 80%) of the hydroxyl groups by alkynyl groups on the surface of CNC was realized through the esterification reaction between the alkynylated anhydride compound and the cellulose nanocrystals. The covalent bonding from the alkynyl groups of ACNC and the azide groups of GAP was proved by Fourier transform infrared spectroscopy, which indicated the possible participation of the click reactions among the ACNC, GAP, and PTPB components in the composites. The nanoreinforcing effect of the rigid ACNC on the GAP/PTPB matrix and the strong interfacial interaction through the covalent grafting between nanoparticles and the matrix significantly improved the mechanical properties of the prepared nanocomposites. In comparison with the neat GAP/PTPB (GP2) material, the tensile strength, Young's modulus, and the elongation at break of the GP2/ACNC-1.0 nanocomposite (containing only 1.0 wt% ACNC) were increased by 103.3%, 100.0% and 12.4%, respectively. This study is a promising attempt to develop advanced polymeric composites reinforced with biomass-based nanoparticles with the simultaneous improvement of strength, modulus and toughness.
引用
收藏
页码:4385 / 4395
页数:11
相关论文
共 38 条
[1]   Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements [J].
Adao, MHVC ;
Saramago, BJV ;
Fernandes, AC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 217 (01) :94-106
[2]  
[Anonymous], 2009, Angew. Chem., DOI DOI 10.1002/ANGE.200804987
[3]   One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites [J].
Cao, Xiaodong ;
Habibi, Youssef ;
Lucia, Lucian A. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (38) :7137-7145
[4]   Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers [J].
Cao, Yewen ;
Lai, Zuliang ;
Feng, Jiachun ;
Wu, Peiyi .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (25) :9271-9278
[5]   Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices [J].
Dagnon, Koffi L. ;
Shanmuganathan, Kadhiravan ;
Weder, Christoph ;
Rowan, Stuart J. .
MACROMOLECULES, 2012, 45 (11) :4707-4715
[6]   Structure and Mechanical Properties of Novel Composites Based on Glycidyl Azide Polymer and Propargyl-Terminated Polybutadiene as Potential Binder of Solid Propellant [J].
Ding, Youzhao ;
Hu, Chong ;
Guo, Xiang ;
Che, Yuanyuan ;
Huang, Jin .
JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (07)
[7]  
Dufresne A, 2012, NANOCELLULOSE: FROM NATURE TO HIGH PERFORMANCE TAILORED MATERIALS, P1, DOI 10.1515/9783110254600
[8]   Nanocellulose: a new ageless bionanomaterial [J].
Dufresne, Alain .
MATERIALS TODAY, 2013, 16 (06) :220-227
[9]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33
[10]   Surface modification of cellulose nanocrystals [J].
Eyley, Samuel ;
Thielemans, Wim .
NANOSCALE, 2014, 6 (14) :7764-7779