MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors

被引:114
作者
Kim, Jinyoung [1 ]
Jang, Moonjeong [2 ]
Jeong, Geonyoung [1 ]
Yu, Seungyeon [1 ]
Park, Jonghwa [1 ]
Lee, Youngoh [1 ]
Cho, Soowon [1 ]
Yeom, Jeonghee [1 ]
Lee, Youngsu [1 ]
Choe, Ayoung [1 ]
Kim, Young-Ryul [1 ]
Yoon, Yeoheung [2 ]
Lee, Sun Sook [2 ]
An, Ki-Seok [2 ]
Ko, Hyunhyub [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] Korea Res Inst Chem Technol KRICT, Thin Film Mat Res Ctr, Daejeon 34114, South Korea
基金
新加坡国家研究基金会;
关键词
Electronic skin; Piezoelectric sensor; MXene; Porous structure; Dynamic force; PIEZOELECTRIC NANOGENERATORS; TI3C2TX MXENE; ENERGY; ARRAYS;
D O I
10.1016/j.nanoen.2021.106409
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Piezoelectric polyvinylidene fluoride (PVDF) has been widely utilized in flexible and self-powered tactile sensors, which require high ferroelectricity of polar phase PVDF. Herein, we demonstrate self-powered piezoelectric e-skins with high sensitivity and broad sensing range based on 3D porous structures of MXene (Ti3C2Tx)/PVDF. MXene was used as a nucleation agent to increase the ferroelectric properties of PVDF. This was carried out considering its 2D geometry and abundant surface functional groups that facilitate intermolecular hydrogen bonding between the surface functional groups of MXene and the CH2 group of PVDF. In addition, porous structures can increase the variation in contact area and localized stress concentration in response to applied pressure. This further enhances the piezoelectric sensitivity. Owing to structural deformation and localized stress concentration, the piezoelectric sensitivity of porous MXene/PVDF e-skin is 11.9 and 1.4 nA kPa(-1) for low (< 2.5 kPa) and high (2.5-100 kPa) pressure ranges, respectively. These are 31 and 3.7 times higher, respectively, than that of planar MXene/PVDF e-skin (0.4 nA kPa(-1) for <100 kPa). In addition, porous MXene/PVDF e-skin exhibits a broad sensing range of up to 100 kPa, and stable sensing performance (5000 repetitions). Our piezoelectric porous MXene/PVDF e-skins enable the monitoring of high-frequency dynamic signals such as acoustic sound waves as well as low-frequency radial artery pulses. In particular, the detection of high-frequency vibrations from sliding friction enables our sensor array to perceive various surface textures with different roughness and moduli, as well as the spatial distribution of words embossed on surfaces. This demonstrates its substantial potential for application in wearable devices, prosthetic limbs, robotics, and healthcare monitoring devices.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[2]   A review of power harvesting using piezoelectric materials (2003-2006) [J].
Anton, Steven R. ;
Sodano, Henry A. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (03) :R1-R21
[3]   A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR [J].
Cai, Xiaomei ;
Lei, Tingping ;
Sun, Daoheng ;
Lin, Liwei .
RSC ADVANCES, 2017, 7 (25) :15382-15389
[4]   Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage [J].
Cao, Junming ;
Li, Junzhi ;
Li, Dongdong ;
Yuan, Zeyu ;
Zhang, Yuming ;
Shulga, Valerii ;
Sun, Ziqi ;
Han, Wei .
NANO-MICRO LETTERS, 2021, 13 (01)
[5]   Microbe-Assisted Assembly of Ti3C2Tx MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage [J].
Cao, Junming ;
Sun, Ziqi ;
Li, Junzhi ;
Zhu, Yukun ;
Yuan, Zeyu ;
Zhang, Yuming ;
Li, Dongdong ;
Wang, Lili ;
Han, Wei .
ACS NANO, 2021, 15 (02) :3423-3433
[6]   Porous PVDF As Effective Sonic Wave Driven Nanogenerators [J].
Cha, SeungNam ;
Kim, Seong Min ;
Kim, HyunJin ;
Ku, JiYeon ;
Sohn, Jung Inn ;
Park, Young Jun ;
Song, Byong Gwon ;
Jung, Myoung Hoon ;
Lee, Eun Kyung ;
Choi, Byoung Lyong ;
Park, Jong Jin ;
Wang, Zhong Lin ;
Kim, Jong Min ;
Kim, Kinam .
NANO LETTERS, 2011, 11 (12) :5142-5147
[7]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[8]   Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement [J].
Chen, Hui-jiuan ;
Han, Songjia ;
Liu, Chuan ;
Luo, Zhenhua ;
Shieh, Han-Ping D. ;
Hsiao, Rong-Shue ;
Yang, Bo-Ru .
SENSORS AND ACTUATORS A-PHYSICAL, 2016, 245 :135-139
[9]   Bioinspired Microspines for a High-Performance Spray Ti3C2Tx MXene-Based Piezoresistive Sensor [J].
Cheng, Yongfa ;
Ma, Yanan ;
Li, Luying ;
Zhu, Meng ;
Yue, Yang ;
Liu, Weijie ;
Wang, Longfei ;
Jia, Shuangfeng ;
Li, Chen ;
Qi, Tianyu ;
Wang, Jianbo ;
Gao, Yihua .
ACS NANO, 2020, 14 (02) :2145-2155
[10]   Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals [J].
Deysher, Grayson ;
Shuck, Christopher Eugene ;
Hantanasirisakul, Kanit ;
Frey, Nathan C. ;
Foucher, Alexandre C. ;
Maleski, Kathleen ;
Sarycheva, Asia ;
Shenoy, Vivek B. ;
Stach, Eric A. ;
Anasori, Babak ;
Gogotsi, Yury .
ACS NANO, 2020, 14 (01) :204-217