Ultrasound Bandwidth Enhancement Through Pulse Compression Using a CMUT Probe

被引:0
作者
Benane, Yanis Mehdi [1 ]
Lavarello, Roberto [2 ]
Bujoreanu, Denis [1 ]
Cachard, Christian [1 ]
Varray, Francois [1 ]
Savoia, Alessandro Stuart [3 ]
Franceschini, Emilie [4 ]
Basset, Olivier [1 ]
机构
[1] Univ Lyon, UCB Lyon 1, UJM St Etienne, INSA Lyon,Creatis,CNRS,Inserm, Lyon, France
[2] Pontificia Univ Catolica Peru, Dept Ingn, Lab Imagenes Med, Lima, Peru
[3] Univ Rome Tre, Dipartimento Ingn, Via Vasca Navale 84, I-00146 Rome, Italy
[4] Aix Marseille Univ, CNRS, Cent Marseille, Lab Mecan & Acoust, Marseille, France
来源
2017 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2017年
关键词
CMUT probe; bandwidth enhancement; pulse compression; plane wave; ultrafast imaging; experimental results;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The image quality provided by current ultrasound (US) scanners can be increased by extending the effective bandwidth of the US transducers. In 2007, a promising technique, called Resolution Enhancement Compression (REC), was proposed. Combining chirp modulated signals in emission and Modified Wiener Filters (MTF) in reception, REC allows bandwidth enhancement by boosting the energy of the emitted/received signal in the frequency bands where the transducer operates inefficiently. In this paper the first implementation of REC on a research ultrasound scanner using a Capacitive Micromachined Ultrasonic Transducer (CMUT) is presented, the objective being to increase the quality of the images obtained using a Coherent Plane Wave Compounding (CPWC) beamforming technique. The experimental results acquired on wire and cyst phantom indicate a clear increase of the image quality in terms of axial/lateral resolution and signal/contrast to noise ratio. This paper thus proves that REC is capable to yield very good results when implemented on broadband ultrasound transducers.
引用
收藏
页数:4
相关论文
共 15 条
[1]  
Delannoy B., 1979, Echocardiology, P447, DOI [10.1007/978-94-009-9324-2_62, DOI 10.1007/978-94-009-9324-2_62]
[2]  
Denis B, 2017, INT CONF ACOUST SPEE, P6254, DOI 10.1109/ICASSP.2017.7953359
[3]   Stolt's f-k Migration for Plane Wave Ultrasound Imaging [J].
Garcia, Damien ;
Le Tarnec, Louis ;
Muth, Stephan ;
Montagnon, Emmanuel ;
Poree, Jonathan ;
Cloutier, Guy .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2013, 60 (09) :1853-1867
[4]   Spatial encoding using a code division technique for fast ultrasound imaging [J].
Gran, Fredrik ;
Jensen, Jorgen Arendt .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (01) :12-23
[5]  
Lin F, 2014, I S BIOMED IMAGING, P1188, DOI 10.1109/ISBI.2014.6868088
[6]  
MALLART R, 1992, P SOC PHOTO-OPT INS, V1733, P120, DOI 10.1117/12.130591
[7]  
Miwa H., 1981 ULTR S CHIC IL, P655, DOI [DOI 10.1109/ULTSYM.1981.197703, 10.1109/ULTSYM.1981.197703]
[8]   Coherent Plane-Wave Compounding for Very High Frame Rate Ultrasonography and Transient Elastography [J].
Montaldo, Gabriel ;
Tanter, Mickael ;
Bercoff, Jeremy ;
Benech, Nicolas ;
Fink, Mathias .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2009, 56 (03) :489-506
[9]  
Oelze M. L., IEEE T ULTRASONICS F, V54, P768
[10]  
Pappalardo M., 2008, Piezoelectric and acoustic materials for Transducer Applications, P453, DOI 10.1007/978-0-387-1311