Molecular excited state calculations with adaptive wavefunctions on a quantum eigensolver emulation: reducing circuit depth and separating spin states

被引:16
作者
Chan, Hans Hon Sang [1 ]
Fitzpatrick, Nathan [2 ]
Segarra-Marti, Javier [3 ]
Bearpark, Michael J. [4 ]
Tew, David P. [5 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Cambridge Quantum Comp Ltd, 9a Bridge St, Cambridge CB2 1UB, England
[3] Univ Valencia, Inst Ciencia Mol, POB 22085, Valencia, Spain
[4] Imperial Coll London, Dept Chem, Mol Sci Res Hub, White City Campus,82 Wood Lane, London W12 0BZ, England
[5] Univ Oxford, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England
基金
欧盟地平线“2020”;
关键词
ENERGY;
D O I
10.1039/d1cp02227j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ab initio electronic excited state calculations are necessary for the quantitative study of photochemical reactions, but their accurate computation on classical computers is plagued by prohibitive resource scaling. The Variational Quantum Deflation (VQD) is an extension of the quantum-classical Variational Quantum Eigensolver (VQE) algorithm for calculating electronic excited state energies, and has the potential to address some of these scaling challenges using quantum computers. However, quantum computers available in the near term can only support a limited number of quantum circuit operations, so reducing the quantum computational cost in VQD methods is critical to their realisation. In this work, we investigate the use of adaptive quantum circuit growth (ADAPT-VQE) in excited state VQD calculations, a strategy that has been successful previously in reducing the resources required for ground state energy VQE calculations. We also invoke spin restrictions to separate the recovery of eigenstates with different spin symmetry to reduce the number of calculations and accumulation of errors in computing excited states. We created a quantum eigensolver emulation package - Quantum Eigensolver Building on Achievements of Both quantum computing and quantum chemistry (QEBAB) - for testing the proposed adaptive procedure against two existing VQD methods that use fixed-length quantum circuits: UCCGSD-VQD and k-UpCCGSD-VQD. For a lithium hydride test case we found that the spin-restricted adaptive growth variant of VQD uses the most compact circuits out of the tested methods by far, consistently recovers adequate electron correlation energy for different nuclear geometries and eigenstates while isolating the singlet and triplet manifold. This work is a further step towards developing techniques which improve the efficiency of hybrid quantum algorithms for excited state quantum chemistry, opening up the possibility of exploiting real quantum computers for electronic excited state calculations sooner than previously anticipated.
引用
收藏
页码:26438 / 26450
页数:13
相关论文
共 49 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]   Coupled-cluster theory in quantum chemistry [J].
Bartlett, Rodney J. ;
Musial, Monika .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :291-352
[3]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[4]   Toward Quantum Computing for High-Energy Excited States in Molecular Systems: Quantum Phase Estimations of Core-Level States [J].
Bauman, Nicholas P. ;
Liu, Hongbin ;
Bylaska, Eric J. ;
Krishnamoorthy, Sriram ;
Low, Guang Hao ;
Granade, Christopher E. ;
Wiebe, Nathan ;
Baker, Nathan A. ;
Peng, Bo ;
Roetteler, Martin ;
Troyer, Matthias ;
Kowalski, Karol .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (01) :201-210
[5]   Quantum simulations of excited states with active-space downfolded Hamiltonians [J].
Bauman, Nicholas P. ;
Low, Guang Hao ;
Kowalski, Karol .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (23)
[6]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[7]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[8]  
Cerezo M., 2020, Variational Quantum State Eigensolver
[9]  
Chan, 2018, WIRES COMPUT STAT, V8, P1
[10]   Benchmarking Adaptive Variational Quantum Eigensolvers [J].
Claudino, Daniel ;
Wright, Jerimiah ;
McCaskey, Alexander J. ;
Humble, Travis S. .
FRONTIERS IN CHEMISTRY, 2020, 8