Sparse Erroneous Vehicular Trajectory Compression and Recovery Via Compressive Sensing

被引:3
作者
Hu, Miao [1 ]
Zhong, Zhangdui [1 ]
Chen, Wei [1 ]
机构
[1] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China
来源
2014 IEEE 11TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS) | 2014年
关键词
Erroneous Vehicular Trajectory; Compression; Recovery; Compressive Sensing;
D O I
10.1109/MASS.2014.42
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Vehicle tracking information is necessary to enable safety communication systems and intelligent transportation systems. Compression technologies with high efficiency and low complexity provide a promising approach to address the transmission and computing problems in vehicle tracking applications. Especially, vehicular trajectory with sparse errors that happened in the measurement sensing process poses a great challenge on traditional compression algorithms. In this paper, we analyze and design a compressive sensing (CS) based erroneous trajectory compression and recovery algorithm for vehicle tracking scenario. Moreover, some theoretical bounds for the proposed recovery optimization problem are analyzed and proved. The CS-based method proposed in this paper could not only achieve a fairly high compression rate and recovery accuracy, but fit the bandwidth mismatch between the road side unit (RSU) and on board unit (OBU). In another aspect, the Kalman filtering (KF) technology is applied for further optimizing the system performance, e.g. mean square error (MSE). Extensive simulations with real vehicular trajectories are carried out, which shows that CS-based compression algorithm achieves relatively high compression performance compared to some state-of-the-art trajectory compression algorithms.
引用
收藏
页码:668 / 673
页数:6
相关论文
共 16 条
[1]  
Alasmary W, 2013, INT WIREL COMMUN, P700, DOI 10.1109/IWCMC.2013.6583642
[2]  
[Anonymous], 1973, Cartographica: the international journal for geographic information and geovisualization, DOI DOI 10.3138/FM57-6770-U75U-7727
[3]   ON THE APPROXIMATION OF CURVES BY LINE SEGMENTS USING DYNAMIC PROGRAMMING [J].
BELLMAN, R .
COMMUNICATIONS OF THE ACM, 1961, 4 (06) :284-284
[4]  
BOARDMAN TJ, 1979, TECHNOMETRICS, V21, P582
[5]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[6]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]  
Fu Bin, 2011, 2011 IEEE/ICME International Conference on Complex Medical Engineering - CME 2011, P466, DOI 10.1109/ICCME.2011.5876785
[9]   Compressed sensing for networked data [J].
Haupt, Jarvis ;
Bajwa, Waheed U. ;
Rabbat, Michael ;
Nowak, Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :92-101
[10]   FAST 2-DIMENSIONAL MEDIAN FILTERING ALGORITHM [J].
HUANG, TS ;
YANG, GJ ;
TANG, GY .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1979, 27 (01) :13-18