Constructing a Synthetic Metabolic Pathway in Escherichia Coli to Produce the Enantiomerically Pure (R, R)-2,3-Butanediol

被引:33
作者
Ji, Xiao-Jun [1 ]
Liu, Lu-Gang [1 ]
Shen, Meng-Qiu [1 ]
Nie, Zhi-Kui [1 ]
Tong, Ying-Jia [1 ]
Huang, He [1 ]
机构
[1] Nanjing Tech Univ, Coll Biotechnol & Pharmaceut Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
(R, R)-2,3-butanediol; metabolic engineering; Escherichia coli; acetic acid; 2,3-BUTANEDIOL STEREOISOMERS; FLUX REDISTRIBUTION; EXPRESSION; MECHANISM;
D O I
10.1002/bit.25512
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Enantiomerically pure (R, R)-2,3-butanediol has unique applications due to its special chiral group and spatial configuration. Currently, its chemical production route has many limitations. In addition, no native microorganisms can accumulate (R, R)-2,3-butanediol with an enantio-purity over 99%. Herein, we constructed a synthetic metabolic pathway for enantiomerically pure (R, R)-2,3-butanediol biosynthesis in Escherichia coli. The fermentation results suggested that introduction of the synthetic metabolic pathway redistributed the carbon fluxes to the neutral (R, R)-2,3-butanediol, and thus protected the strain against the acetic acid inhibition. Additionally, it showed that the traditionally used isopropyl beta-D-thiogalactoside (IPTG) induction displayed negative effect on (R, R)-2,3-butanediol biosynthesis in the recombinant E. coli, which was probably due to the protein burden. With no IPTG addition, the (R, R)-2,3-butanediol concentration reached 115g/L by fed-batch culturing of the recombinant E. coli, with an enantio-purity over 99%, which is suitable for the pilot-scale production. Biotechnol. Bioeng. 2015;112: 1056-1059. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1056 / 1059
页数:4
相关论文
共 21 条
  • [11] Elucidating acetate tolerance in E. coli using a genome-wide approach
    Sandoval, Nicholas R.
    Mills, Tirzah Y.
    Zhang, Min
    Gill, Ryan T.
    [J]. METABOLIC ENGINEERING, 2011, 13 (02) : 214 - 224
  • [12] Biotechnological production of 2,3-butanediol stereoisomers: synthetic mechanism and realized methods
    Shen Mengqiu
    Ji Xiaojun
    Nie Zhikui
    Xia Zhifang
    Yang Han
    Huang He
    [J]. CHINESE JOURNAL OF CATALYSIS, 2013, 34 (02) : 351 - 360
  • [13] PROTEIN BURDEN IN ZYMOMONAS-MOBILIS - NEGATIVE FLUX AND GROWTH-CONTROL DUE TO OVERPRODUCTION OF GLYCOLYTIC-ENZYMES
    SNOEP, JL
    YOMANO, LP
    WESTERHOFF, HV
    INGRAM, LO
    [J]. MICROBIOLOGY-SGM, 1995, 141 : 2329 - 2337
  • [14] MECHANISM FOR THE FORMATION OF 2,3-BUTANEDIOL STEREOISOMERS IN BACILLUS-POLYMYXA
    UI, S
    MASUDA, T
    MASUDA, H
    MURAKI, H
    [J]. JOURNAL OF FERMENTATION TECHNOLOGY, 1986, 64 (06): : 481 - 486
  • [15] Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N
    Van Houdt, Rob
    Aertsen, Abram
    Michiels, Chris W.
    [J]. RESEARCH IN MICROBIOLOGY, 2007, 158 (04) : 379 - 385
  • [16] Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production
    Wang, Qingzhao
    Chen, Tao
    Zhao, Xueming
    Chamu, Jauhleene
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (07) : 1610 - 1621
  • [17] Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
    Xu, Youqiang
    Chu, Haipei
    Gao, Chao
    Tao, Fei
    Zhou, Zikang
    Li, Kun
    Li, Lixiang
    Ma, Cuiqing
    Xu, Ping
    [J]. METABOLIC ENGINEERING, 2014, 23 : 22 - 33
  • [18] Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases
    Yan, Yajun
    Lee, Chia-Chi
    Liao, James C.
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2009, 7 (19) : 3914 - 3917
  • [19] Yang YT, 2000, BIOTECHNOL BIOENG, V69, P150, DOI 10.1002/(SICI)1097-0290(20000720)69:2<150::AID-BIT4>3.0.CO
  • [20] 2-N