Constructing a Synthetic Metabolic Pathway in Escherichia Coli to Produce the Enantiomerically Pure (R, R)-2,3-Butanediol

被引:33
作者
Ji, Xiao-Jun [1 ]
Liu, Lu-Gang [1 ]
Shen, Meng-Qiu [1 ]
Nie, Zhi-Kui [1 ]
Tong, Ying-Jia [1 ]
Huang, He [1 ]
机构
[1] Nanjing Tech Univ, Coll Biotechnol & Pharmaceut Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
(R, R)-2,3-butanediol; metabolic engineering; Escherichia coli; acetic acid; 2,3-BUTANEDIOL STEREOISOMERS; FLUX REDISTRIBUTION; EXPRESSION; MECHANISM;
D O I
10.1002/bit.25512
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Enantiomerically pure (R, R)-2,3-butanediol has unique applications due to its special chiral group and spatial configuration. Currently, its chemical production route has many limitations. In addition, no native microorganisms can accumulate (R, R)-2,3-butanediol with an enantio-purity over 99%. Herein, we constructed a synthetic metabolic pathway for enantiomerically pure (R, R)-2,3-butanediol biosynthesis in Escherichia coli. The fermentation results suggested that introduction of the synthetic metabolic pathway redistributed the carbon fluxes to the neutral (R, R)-2,3-butanediol, and thus protected the strain against the acetic acid inhibition. Additionally, it showed that the traditionally used isopropyl beta-D-thiogalactoside (IPTG) induction displayed negative effect on (R, R)-2,3-butanediol biosynthesis in the recombinant E. coli, which was probably due to the protein burden. With no IPTG addition, the (R, R)-2,3-butanediol concentration reached 115g/L by fed-batch culturing of the recombinant E. coli, with an enantio-purity over 99%, which is suitable for the pilot-scale production. Biotechnol. Bioeng. 2015;112: 1056-1059. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1056 / 1059
页数:4
相关论文
共 21 条
  • [1] Bermejo LL, 1998, APPL ENVIRON MICROB, V64, P1079
  • [2] Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae
    Chen, Chuan
    Wei, Dong
    Shi, Jiping
    Wang, Min
    Hao, Jian
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (10) : 4603 - 4613
  • [3] Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae
    Ji, Xiao-Jun
    Xia, Zhi-Fang
    Fu, Ning-Hua
    Nie, Zhi-Kui
    Shen, Meng-Qiu
    Tian, Qian-Qian
    Huang, He
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [4] Microbial 2,3-butanediol production: A state-of-the-art review
    Ji, Xiao-Jun
    Huang, He
    Ouyang, Ping-Kai
    [J]. BIOTECHNOLOGY ADVANCES, 2011, 29 (03) : 351 - 364
  • [5] Somewhat in control - the role of transcription in regulating microbial metabolic fluxes
    Kochanowski, Karl
    Sauer, Uwe
    Chubukov, Victor
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 (06) : 987 - 993
  • [6] Lee JW, 2012, NAT CHEM BIOL, V8, P536, DOI [10.1038/NCHEMBIO.970, 10.1038/nchembio.970]
  • [7] Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
    Lian, Jiazhang
    Chao, Ran
    Zhao, Huimin
    [J]. METABOLIC ENGINEERING, 2014, 23 : 92 - 99
  • [8] Chemoenzymatic preparation of (2S,3S)- and (2R,3R)-2,3-butanediols and their esters from mixtures of d,l- and meso-diols
    Liu, R
    Högberg, HE
    [J]. TETRAHEDRON-ASYMMETRY, 2001, 12 (05) : 771 - 778
  • [9] Low salt medium for lactate and ethanol production by recombinant Escherichia coli B
    Martinez, Alfredo
    Grabar, T. B.
    Shanmugam, K. T.
    Yomano, L. P.
    York, S. W.
    Ingram, L. O.
    [J]. BIOTECHNOLOGY LETTERS, 2007, 29 (03) : 397 - 404
  • [10] Combinatorial optimization of cyanobacterial 2,3-butanediol production
    Oliver, John W. K.
    Machado, Iara M. P.
    Yoneda, Hisanari
    Atsumi, Shota
    [J]. METABOLIC ENGINEERING, 2014, 22 : 76 - 82