New Bifunctional Deep-Eutectic Solvent for In Situ Selective Extraction of Valuable Metals from Spent Lithium Batteries

被引:36
|
作者
Tang, Shujie [1 ]
Feng, Jiali [1 ]
Su, Runchang [1 ]
Zhang, Mei [1 ]
Guo, Min [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, State Key Lab Adv Met, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
deep-eutectic solvent; bifunctional; selective; spent lithium ion batteries; transition-metal oxalate dihydrate; lithium oxalate; reusability; ION BATTERIES; RECOVERY; CATHODE; SEPARATION; OXIDES; COBALT;
D O I
10.1021/acssuschemeng.2c01408
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel bifunctional deep-eutectic solvent (DES) based on glycol (EG) and oxalic acid dihydrate (OAD) was designed for efficient and selective extraction of valuable metals from spent lithium ion batteries (LIBs) cathode active materials (LiCoO2 or Li1(4.8)Ni(1.7)Co(8.5)MnO(30.5)) under mild conditions, realizing complete in situ separation of Li and Co/Ni/Mn. The effects of different experimental parameters on Li and Co extraction efficiencies (eta(Li),eta(Co)) were explored by orthogonal and single-factor experiments in detail. Under the optimal conditions (90 degrees C, 5EG:1OAD, 12 h, 16 g/L), nearly 94.4 and 94.1% of Li, as well as trace amounts of Co/Ni/Mn (<1.2%), were separately leached from LiCoO2 and Li14.8Ni1.7Co8.5MnO30.5 into the filtrate, while the oxalate dihydrates (CoC2O4 center dot 2H(2)O or (Ni, Co, Mn)C2O4 center dot 2H(2)O) with nanorod structures were achieved. The specific leaching mechanism was elucidated. Moreover, the lithium oxalate (Li2C2O4) with irregular particle morphology was also obtained by evaporating the filtrate at 200 degrees C. The reusability of the as-prepared DES (5EG:1OAD) for the LIBs was also studied. After three cycles of DES leaching, the.Li could still reach more than 93%, while almost all Co was remained in the solid phase. This study may shed light on developing bifunctional or even multifunctional DESs to achieve highly selective extraction of metals from LIBs.
引用
收藏
页码:8423 / 8432
页数:10
相关论文
共 50 条
  • [41] Novel approach to recycling of valuable metals from spent lithium-ion batteries using hydrometallurgy, focused on preferential extraction of lithium
    Qing, Jialin
    Wu, Xinsheng
    Zeng, Li
    Guan, Wenjuan
    Cao, Zuoying
    Li, Qinggang
    Wang, Mingyu
    Zhang, Guiqing
    Wu, Shengxi
    JOURNAL OF CLEANER PRODUCTION, 2023, 431
  • [42] Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries
    Xu, Zhenghe
    Liu, Zhenda
    Wang, Shubin
    Lu, Zhouguang
    Zhang, Zuotai
    Wang, Hao
    Jiang, Feng
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2022, 51 (03): : 454 - 465
  • [43] Microwave reduction enhanced leaching of valuable metals from spent lithium -ion batteries
    Fu, Yuanpeng
    He, Yaqun
    Yang, Yong
    Qu, Lili
    Li, Jinlong
    Zhou, Rui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 832 (832)
  • [44] Microwave-assisted chlorination extraction of valuable metals from spent power ternary lithium-ion batteries
    Guan, Jie
    Luo, Leilei
    Su, Ruijing
    Guo, Yaoguang
    Zhang, Chenglong
    Wang, Ruixue
    Song, Xiaolong
    Zhuang, Xuning
    Zhang, Xihua
    Zhang, Xiaojiao
    Wu, Hongcheng
    Gu, Weixing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2024, 104 (16) : 4089 - 4102
  • [45] A sustainable process for the recovery of valuable metals from spent lithium-ion batteries
    Fan, Bailin
    Chen, Xiangping
    Zhou, Tao
    Zhang, Jinxia
    Xu, Bao
    WASTE MANAGEMENT & RESEARCH, 2016, 34 (05) : 474 - 481
  • [46] Synergic Mechanisms on Carbon and Sulfur during the Selective Recovery of Valuable Metals from Spent Lithium-Ion Batteries
    Xu, Ping
    Liu, Chunwei
    Zhang, Xihua
    Zheng, Xiaohong
    Lv, Weiguang
    Rao, Fu
    Yao, Peifan
    Wang, Jingwei
    Sun, Zhi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (05) : 2271 - 2279
  • [47] Designing Low-Cost, Green, and Recyclable Deep Eutectic Solvents for Selective Separation and Recovery of Valuable Metals from Spent Li-Ion Batteries
    Cao, Shiwei
    Ma, Yi
    Yang, Lu
    Lin, Liqun
    Wang, Jiajun
    Xing, Yan
    Lu, Feng
    Cao, Tengliang
    Zhao, Zhenlun
    Liu, Dongran
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) : 16984 - 16994
  • [48] Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10
    Lei Shuya
    Cao Yang
    Cao Xuefeng
    Sun Wei
    Weng Yaqing
    Yang Yue
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 250 (250)
  • [49] A green recyclable process for selective recovery of Li and Fe from spent lithium iron phosphate batteries by synergistic effect of deep eutectic solvent and oxygen
    Zhang, Yaozhi
    Wang, Bingru
    Wang, Fang
    Dai, Yasen
    Ren, Shuhang
    Hou, Yucui
    Wu, Weize
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [50] A Weak Acidic and Strong Coordinated Deep Eutectic Solvent for Recycling of Cathode from Spent Lithium-Ion Batteries
    Tian, Yurun
    Chen, Wenjun
    Zhang, Baolong
    Chen, Yu
    Shi, Ruifen
    Liu, Shuzi
    Zhang, Zhenchuan
    Mu, Tiancheng
    CHEMSUSCHEM, 2022, 15 (16)