Gate-controlled anisotropy in Aharonov-Casher spin interference: Signatures of Dresselhaus spin-orbit inversion and spin phases

被引:18
作者
Nagasawa, Fumiya [1 ]
Reynoso, Andres A. [2 ,3 ]
Pablo Baltanas, Jose [4 ]
Frustaglia, Diego [4 ,5 ]
Saarikoski, Henri [6 ]
Nitta, Junsaku [1 ,7 ,8 ]
机构
[1] Tohoku Univ, Dept Mat Sci, Sendai, Miyagi 9808579, Japan
[2] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ Seville, Dept Fis Aplicada 2, E-41012 Seville, Spain
[5] Albert Ludwigs Univ Freiburg, Freiburg Inst Adv Studies FRIAS, D-79104 Freiburg, Germany
[6] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[7] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
[8] Tohoku Univ, Org Adv Studies, Core Res Cluster, Ctr Sci & Innovat Spintron, Sendai, Miyagi 9808577, Japan
基金
日本学术振兴会; 欧盟地平线“2020”;
关键词
SEMICONDUCTORS;
D O I
10.1103/PhysRevB.98.245301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The coexistence of Rashba and Dresselhaus spin-orbit interactions (SOIs) in semiconductor quantum wells leads to an anisotropic effective field coupled to carriers' spins. We demonstrate a gate-controlled anisotropy in Aharonov-Casher (AC) spin interferometry experiments with InGaAs mesoscopic rings by using an in-plane magnetic field as a probe. Supported by a perturbation-theory approach, we find that the Rashba SOI strength controls the AC resistance anisotropy via spin dynamic and geometric phases and establish ways to manipulate them by employing electric and magnetic tunings. Moreover, assisted by two-dimensional numerical simulations, we identify a remarkable anisotropy inversion in our experiments attributed to a sign change in the renormalized linear Dresselhaus SOI controlled by electrical means, which would open the door to new possibilities for spin manipulation.
引用
收藏
页数:9
相关论文
empty
未找到相关数据