Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models

被引:68
作者
Erguler, Kamil [1 ]
Stumpf, Michael P. H. [1 ,2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Ctr Bioinformat, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Ctr Integrat Syst Biol, London SW7 2AZ, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
NETWORKS; UNCERTAINTY; BIFURCATION;
D O I
10.1039/c0mb00107d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The size and complexity of cellular systems make building predictive models an extremely difficult task. In principle dynamical time-course data can be used to elucidate the structure of the underlying molecular mechanisms, but a central and recurring problem is that many and very different models can be fitted to experimental data, especially when the latter are limited and subject to noise. Even given a model, estimating its parameters remains challenging in real-world systems. Here we present a comprehensive analysis of 180 systems biology models, which allows us to classify the parameters with respect to their contribution to the overall dynamical behaviour of the different systems. Our results reveal candidate elements of control in biochemical pathways that differentially contribute to dynamics. We introduce sensitivity profiles that concisely characterize parameter sensitivity and demonstrate how this can be connected to variability in data. Systematically linking data and model sloppiness allows us to extract features of dynamical systems that determine how well parameters can be estimated from time-course measurements, and associates the extent of data required for parameter inference with the model structure, and also with the global dynamical state of the system. The comprehensive analysis of so many systems biology models reaffirms the inability to estimate precisely most model or kinetic parameters as a generic feature of dynamical systems, and provides safe guidelines for performing better inferences and model predictions in the context of reverse engineering of mathematical models for biological systems.
引用
收藏
页码:1593 / 1602
页数:10
相关论文
共 41 条
  • [1] [Anonymous], 2003, Bayesian Data Analysis
  • [2] Stimulus design for model selection and validation in cell signaling
    Apgar, Joshua F.
    Toettcher, Jared E.
    Endy, Drew
    White, Forest M.
    Tidor, Bruce
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (02)
  • [3] Sloppy models, parameter uncertainty, and the role of experimental design
    Apgar, Joshua F.
    Witmer, David K.
    White, Forest M.
    Tidor, Bruce
    [J]. MOLECULAR BIOSYSTEMS, 2010, 6 (10) : 1890 - 1900
  • [4] Parameter estimation and determinability analysis applied to Drosophila gap gene circuits
    Ashyraliyev, Maksat
    Jaeger, Johannes
    Blom, Joke G.
    [J]. BMC SYSTEMS BIOLOGY, 2008, 2
  • [5] Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model
    Bandara, Samuel
    Schloeder, Johannes P.
    Eils, Roland
    Bock, Hans Georg
    Meyer, Tobias
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (11)
  • [6] Reverse engineering of regulatory networks in human B cells
    Basso, K
    Margolin, AA
    Stolovitzky, G
    Klein, U
    Dalla-Favera, R
    Califano, A
    [J]. NATURE GENETICS, 2005, 37 (04) : 382 - 390
  • [7] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [8] Statistical mechanical approaches to models with many poorly known parameters
    Brown, KS
    Sethna, JP
    [J]. PHYSICAL REVIEW E, 2003, 68 (02) : 9
  • [9] Dynamic Bayesian sensitivity analysis of a myocardial metabolic model
    Calvetti, D.
    Hageman, R.
    Occhipinti, R.
    Somersalo, E.
    [J]. MATHEMATICAL BIOSCIENCES, 2008, 212 (01) : 1 - 21
  • [10] Geometry and topology of parameter space: investigating measures of robustness in regulatory networks
    Chaves, Madalena
    Sengupta, Anirvan
    Sontag, Eduardo D.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 59 (03) : 315 - 358