Automatic segmentation of the bones from MR images of the knee

被引:2
作者
Fripp, Jurgen [1 ]
Ourselin, Sebastien [1 ]
Warfield, Simon K. [2 ]
Crozier, Stuart [3 ]
机构
[1] CSIRO ICT Ctr, BioMedIA Lab, Bristol, Avon, England
[2] Childrens Hosp Boston, Harvard Med Sch, Boston, MA USA
[3] Univ Queensland, Sch ITEE, Brisbane, Qld, Australia
来源
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3 | 2007年
关键词
image segmentation; shape; bones;
D O I
10.1109/ISBI.2007.356857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present and validate a hybrid segmentation scheme based around 3D active shape models, which is used to automatically segment the three bones in the knee joint. This scheme is automatically initialised using an affine registration to an atlas. The accuracy and robustness of the approach was experimentally validated using an MR database of 20 fat suppressed Spoiled Gradient Recall images. A median Dice Similarity Coefficient (DSC) of 0.89, 0.96 and 0.96 was obtained for the patella, tibia and femur which illustrates the accuracy of the approach. The robustness of this scheme to initialisation was validated by segmenting each knee image 19 times, each time using a different image in the database as the atlas. An overall segmentation failure rate (DSC < 0.75) of only 3.60% shows that the scheme was robust to initialisation.
引用
收藏
页码:336 / +
页数:3
相关论文
共 50 条
  • [41] Knee cartilage segmentation and thickness computation from ultrasound images
    Faisal, Amir
    Ng, Siew-Cheok
    Goh, Siew-Li
    Lai, Khin Wee
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (04) : 657 - 669
  • [42] Knee cartilage segmentation and thickness computation from ultrasound images
    Amir Faisal
    Siew-Cheok Ng
    Siew-Li Goh
    Khin Wee Lai
    Medical & Biological Engineering & Computing, 2018, 56 : 657 - 669
  • [43] Segmentation of head bones in 3-D CT images from an example
    Faisan, S.
    Passat, N.
    Noblet, V.
    Chabrier, R.
    Armspach, J. -P
    Meyer, C.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 81 - +
  • [44] Segmentation of MR images with intensity inhomogeneities
    Rajapakse, JC
    Kruggel, F
    IMAGE AND VISION COMPUTING, 1998, 16 (03) : 165 - 180
  • [45] AUTOMATIC SEGMENTATION OF THE FEMUR AND TIBIA BONES FROM X-RAY IMAGES BASED ON PURE DILATED RESIDUAL U-NET
    Shen, Weihao
    Xu, Wenbo
    Zhang, Hongyang
    Sun, Zexin
    Ma, Jianxiong
    Ma, Xinlong
    Zhou, Shoujun
    Guo, Shijie
    Wang, Yuanquan
    INVERSE PROBLEMS AND IMAGING, 2021, 15 (06) : 1333 - 1346
  • [46] Automatic segmentation of the glenohumeral cartilages from magnetic resonance images
    Neubert, A.
    Yang, Z.
    Engstrom, C.
    Xia, Y.
    Strudwick, M. W.
    Chandra, S. S.
    Fripp, J.
    Crozier, S.
    MEDICAL PHYSICS, 2016, 43 (10) : 5370 - 5379
  • [47] MsTGANet: Automatic Drusen Segmentation From Retinal OCT Images
    Wang, Meng
    Zhu, Weifang
    Shi, Fei
    Su, Jinzhu
    Chen, Haoyu
    Yu, Kai
    Zhou, Yi
    Peng, Yuanyuan
    Chen, Zhongyue
    Chen, Xinjian
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (02) : 394 - 406
  • [48] Level set method with automatic selective local statistics for brain tumor segmentation in MR images
    Thapaliya, Kiran
    Pyun, Jae-Young
    Park, Chun-Su
    Kwon, Goo-Rak
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2013, 37 (7-8) : 522 - 537
  • [49] Fully automatic estimation of object pose for segmentation initialization: Application to cardiac MR and echocardiography images
    Ma, Meng
    Bosch, Johan G.
    Reiber, Johan H. C.
    Lelieveldt, Boudewijn P. F.
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [50] Approach towards Automatic Segmentation of Diaphragm from Ultrasound Images
    Jain, Nishant
    Kumar, Vinod
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 143 - 147