Automatic segmentation of the bones from MR images of the knee

被引:2
作者
Fripp, Jurgen [1 ]
Ourselin, Sebastien [1 ]
Warfield, Simon K. [2 ]
Crozier, Stuart [3 ]
机构
[1] CSIRO ICT Ctr, BioMedIA Lab, Bristol, Avon, England
[2] Childrens Hosp Boston, Harvard Med Sch, Boston, MA USA
[3] Univ Queensland, Sch ITEE, Brisbane, Qld, Australia
来源
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3 | 2007年
关键词
image segmentation; shape; bones;
D O I
10.1109/ISBI.2007.356857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present and validate a hybrid segmentation scheme based around 3D active shape models, which is used to automatically segment the three bones in the knee joint. This scheme is automatically initialised using an affine registration to an atlas. The accuracy and robustness of the approach was experimentally validated using an MR database of 20 fat suppressed Spoiled Gradient Recall images. A median Dice Similarity Coefficient (DSC) of 0.89, 0.96 and 0.96 was obtained for the patella, tibia and femur which illustrates the accuracy of the approach. The robustness of this scheme to initialisation was validated by segmenting each knee image 19 times, each time using a different image in the database as the atlas. An overall segmentation failure rate (DSC < 0.75) of only 3.60% shows that the scheme was robust to initialisation.
引用
收藏
页码:336 / +
页数:3
相关论文
共 50 条
  • [31] Automatic Prostate Segmentation from Transrectal Ultrasound Images
    Yu, Yanyan
    Cheng, Jieyu
    Li, Jizhou
    Chen, Weifu
    Chiu, Bernard
    2014 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2014, : 117 - 120
  • [32] Segmentation of bones in magnetic resonance images of the wrist
    Wlodarczyk, Justyna
    Czaplicka, Kamila
    Tabor, Zbislaw
    Wojciechowski, Wadim
    Urbanik, Andrzej
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2015, 10 (04) : 419 - 431
  • [33] Automatic segmentation of brain tumour in MR images using an enhanced deep learning approach
    Tripathi, Sumit
    Verma, Ashish
    Sharma, Neeraj
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2021, 9 (02) : 121 - 130
  • [34] Automatic Segmentation of Hair In Images
    Aarabi, Parham
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2015, : 69 - 72
  • [35] Automatic Segmentation of the Human Brain Ventricles from MR Images by Knowledge-Based Region Growing and Trimming
    Jimin Liu
    Su Huang
    Wieslaw L. Nowinski
    Neuroinformatics, 2009, 7 : 131 - 146
  • [36] Model-based 3D segmentation of the bones of the ankle and subtalar joints in MR images
    Liu, JM
    Udupa, JK
    Saha, PK
    Odhner, D
    Hirsch, BE
    Siegler, S
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1650 - 1657
  • [37] Combining Images and T-Staging Information to Improve the Automatic Segmentation of Nasopharyngeal Carcinoma Tumors in MR Images
    Cai, Mingwei
    Wang, Jiazhou
    Yang, Qing
    Guo, Ying
    Zhang, Zhen
    Ying, Hongmei
    Hu, Weigang
    Hu, Chaosu
    IEEE ACCESS, 2021, 9 : 21323 - 21331
  • [38] Efficient segmentation of lumbar intervertebral disc from MR images
    Silvoster, Leena M.
    Kumar, Retnaswami Mathusoothana S.
    IET IMAGE PROCESSING, 2020, 14 (13) : 3076 - 3083
  • [39] Segmentation of parotid glands from registered CT and MR images
    Mocnik, Domen
    Ibragimov, Bulat
    Xing, Lei
    Strojan, Primoz
    Likar, Bostjan
    Pernus, Franjo
    Vrtovec, Tomaz
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 52 : 33 - 41
  • [40] Segmentation and volume estimation of brain tissues from MR images
    Smitha, S. S.
    Revathy, K.
    Kesavadas, C.
    IMECS 2006: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, 2006, : 543 - +