Automatic segmentation of the bones from MR images of the knee

被引:2
作者
Fripp, Jurgen [1 ]
Ourselin, Sebastien [1 ]
Warfield, Simon K. [2 ]
Crozier, Stuart [3 ]
机构
[1] CSIRO ICT Ctr, BioMedIA Lab, Bristol, Avon, England
[2] Childrens Hosp Boston, Harvard Med Sch, Boston, MA USA
[3] Univ Queensland, Sch ITEE, Brisbane, Qld, Australia
来源
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3 | 2007年
关键词
image segmentation; shape; bones;
D O I
10.1109/ISBI.2007.356857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present and validate a hybrid segmentation scheme based around 3D active shape models, which is used to automatically segment the three bones in the knee joint. This scheme is automatically initialised using an affine registration to an atlas. The accuracy and robustness of the approach was experimentally validated using an MR database of 20 fat suppressed Spoiled Gradient Recall images. A median Dice Similarity Coefficient (DSC) of 0.89, 0.96 and 0.96 was obtained for the patella, tibia and femur which illustrates the accuracy of the approach. The robustness of this scheme to initialisation was validated by segmenting each knee image 19 times, each time using a different image in the database as the atlas. An overall segmentation failure rate (DSC < 0.75) of only 3.60% shows that the scheme was robust to initialisation.
引用
收藏
页码:336 / +
页数:3
相关论文
共 50 条
  • [21] Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning
    Fortunati, Valerio
    Verhaart, Rene F.
    Niessen, Wiro J.
    Veenland, Jifke F.
    Paulides, Margarethus M.
    van Walsum, Theo
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (16) : 6547 - 6562
  • [22] Automatic segmentation of the cardiac MR images based on nested fully convolutional dense network with dilated convolution
    Zhang, Hongyang
    Zhang, Wenxue
    Shen, Weihao
    Li, Nana
    Chen, Yunjie
    Li, Shuo
    Chen, Bo
    Guo, Shijie
    Wang, Yuanquan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [23] Automatic segmentation of subcortical brain structures in MR images using information fusion
    Barra, V
    Boire, JY
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (07) : 549 - 558
  • [24] Preliminary investigations on automatic segmentation methods for detection and volume calculation of brain tumor from MR images
    Swathi, K.
    Balasubramanian, Kishore
    BIOMEDICAL RESEARCH-INDIA, 2016, 27 (02): : 563 - 569
  • [25] Automatic Segmentation of Uterine Cavity and Placenta on MR Images Using Deep Learning
    Shahedi, Maysam
    Dormer, James D.
    Do, Quyen N.
    Xi, Yin
    Lewis, Matthew A.
    Herrera, Christina L.
    Spong, Catherine Y.
    Madhuranthakam, Ananth J.
    Twickler, Diane M.
    Fei, Baowei
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [26] Segmentation and Characterization of Brain Tumor from MR Images
    Singh, Laxman
    Dubey, R. B.
    Jaffery, Z. A.
    Zaheeruddin, Z.
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN RECENT TECHNOLOGIES IN COMMUNICATION AND COMPUTING (ARTCOM 2009), 2009, : 815 - +
  • [27] Automatic segmentation of nasopharyngeal carcinoma from CT images
    Daoud, Bilel
    Khalfallah, Ali
    Farhat, Leila
    Mnejja, Wafa
    Morooka, Keni'chi
    Bouhlel, Med Salim
    Daoud, Jamel
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2020, 33 (03) : 240 - 257
  • [28] Automatic segmentation of nasopharyngeal carcinoma from CT images
    Daoud B.
    Khalfallah A.
    Farhat L.
    Mnejja W.
    Morooka K.
    Bouhlel M.S.
    Daoud J.
    International Journal of Biomedical Engineering and Technology, 2020, 33 (03): : 240 - 257
  • [29] Automatic Segmentation of the Human Brain Ventricles from MR Images by Knowledge-Based Region Growing and Trimming
    Liu, Jimin
    Huang, Su
    Nowinski, Wieslaw L.
    NEUROINFORMATICS, 2009, 7 (02) : 131 - 146
  • [30] Segmentation of bones in magnetic resonance images of the wrist
    Justyna Włodarczyk
    Kamila Czaplicka
    Zbisław Tabor
    Wadim Wojciechowski
    Andrzej Urbanik
    International Journal of Computer Assisted Radiology and Surgery, 2015, 10 : 419 - 431